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ABSTRACT 40 

Autonomous finite element analyses (AFE) based on CT scans predict the 41 

biomechanical response of femurs during stance and sidewise fall positions. We 42 

combine AFE with patient data via a machine learning (ML) algorithm to predict the 43 

risk of hip fracture. Setting: An opportunistic retrospective clinical study of CT scans.  44 

Aim: To develop a ML algorithm with AFE for hip fracture risk assessment in type-2 45 

diabetic Mellitus (T2DM) and non-T2DM patients. 46 

Abdominal/pelvis CT scans of patients who experienced a hip fracture within two 47 

years after an index CT scan were retrieved from a tertiary medical center database. A 48 

control group of patients without a known hip fracture for at least five years after an 49 

index CT scan was retrieved. Scans belonging to patients with/without T2DM were 50 

identified from coded diagnoses. All femurs underwent an AFE under three 51 

physiological loads. AFE results, patient’s age, weight, and height were input to the 52 

ML algorithm (Support Vector Machine (SVM)), trained by 80% of the known fracture 53 

outcomes, with cross-validation, and verified by the other 20%.  54 

45% of available abdominal/pelvic CT scans were appropriate for AFE (at least 55 

1/4 of the proximal femur was visible in the scan). The AFE success rate in 56 

automatically analyzing CT scans was 91%: 836 femurs we successfully analyzed, and 57 

the results were processed by the SVM algorithm. 282 T2DM femurs (118 intact and 58 

164 fractured) and 554 non-T2DM (314 intact and 240 fractured) were identified. 59 

Among T2DM patients the outcome was:  Sensitivity 92%, Specificity 88%, (cross-60 

validation AUC 0.92), and for the non-T2DM patients: Sensitivity 83%, Specificity 61 

84% (cross-validation AUC 0.84). 62 

Combining AFE data with a ML algorithm provides an unprecedented prediction 63 

accuracy for the risk of hip fracture in T2DM and non-T2DM populations. The fully 64 

autonomous algorithm can be applied as an opportunistic process for hip fracture risk 65 

assessment. 66 

 67 

Keywords: Diabetes mellitus; Hip fracture; Finite element analysis; Fracture risk 68 

assessment, SVM/machine learning. 69 

 70 

 71 

 72 
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INTRODUCTION 73 

Hip fractures are among the most common reasons for orthopedic 74 

hospitalization in the elderly worldwide, leading to major health and financial burden 75 

[1]. The underlying cause of such fractures is most often osteoporosis. Pharmacological 76 

treatments are usually prescribed to prevent hip fractures by patients identified to be at 77 

high risk. While the strength of the hip is a function of its mechanical material 78 

properties, geometry and loading, most risk assessments use bone mineral density as a 79 

surrogate for bone strength.   Hip fracture risk is usually determined by dual-energy X-80 

ray absorptiometry (DXA) measurement of femoral neck areal bone mineral density 81 

(aBMD) or by the Fracture Risk Assessment Tool (FRAX) which is based on eleven 82 

clinical factors along with femoral neck aBMD. Neither of these tools is accurate, 83 

especially for type 2 diabetic Mellitus patients (T2DM). These patients are at a twofold 84 

greater risk of hip fractures and display a "diabetic paradox": increased risk of femoral 85 

fractures despite having higher bone mineral density [2-7]. The trabecular bone score 86 

(TBS) is an indirect index of trabecular architecture applied to infer information from 87 

spine DXA image, but is assessed only for vertebral fracture risk [7, 8] and cannot be 88 

applied to the proximal femur. 89 

Finite element analyses of proximal femurs based on computed tomography scans 90 

(CTFEA) have been developed for predicting femur stiffness and hip fracture risk. 91 

CTFEA  has been demonstrated to outperform DXA [9-14]. The practical use of the 92 

technology has been hampered by the high patient radiation exposure, the expense of 93 

CT scans, and the lack of fully automated FEA calculations.  A large number of 94 

abdominal and pelvic CT scans are available in hospitals or health maintenance 95 

organizations (HMO) picture archiving and communication systems (PACS). These 96 

scans also usually include the hip and the lesser tuberosity of the femur. They may 97 

therefore be potentially used opportunistically for hip FEA without exposing patients 98 

to additional radiation hazards [15].  99 

We have developed Simfini†  [16] as an autonomous CTFEA software application for 100 

the FEA of femurs. This tool has been shown to provide accurate predictions of 101 

pathological hip fractures in patients with metastatic tumors in two retrospective 102 

clinical studies [17, 18].  Recently Simfini’s performance in predicting hip risk of 103 

                                                 
† Simfini is a product of PerSimiO, (U.S. Patent 11,449,993). 
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fracture was also examined in a feasibility retrospective clinical study on a cohort of 51 104 

T2DM patients [19]. This system includes several novel features: 105 

1.    It is fully autonomous, with no manual subjective intervention. 106 

2.    The two femurs (left and right)are automatically segmented from the CT scan by 107 

means of a deep learning (DL) algorithm, and thereafter automatically represented 108 

by a mesh of high-order finite elements. 109 

3.    Physiological loading conditions are simulated that represent the two common 110 

sidewise falls resulting in neck and intertrochanteric fractures. 111 

4.    A machine learning (ML) algorithm is employed in the post-AFE stage which 112 

accounts for patients’ weight, height, gender, and the biomechanical results at 113 

different regions along the proximal femur. 114 

We undertook a retrospective clinical study to assess the performance of the 115 

Simfini system in predicting the risk of hip fracture in type 2 diabetic and non-diabetic 116 

patients, based on opportunistic abdominal and pelvic CT scans obtained from the 117 

PACS of a major medical center. 118 

 119 

METHODS 120 

Study design 121 

The Sheba Medical Center (MC) database was searched for patients with CT 122 

scans of the lower abdomen/pelvis between 2008-2020 who experienced a hip fracture 123 

(study group) during the subsequent two years. Both non-contrast and contrast 124 

enhanced CT scans were considered. The control group included age and weight-125 

matched patients with CT scans who did not sustain a hip fracture in the subsequent 126 

five years (a conservative requirement to make sure that patients indeed are risk-free 127 

for a much longer period than compared to the study group) according to the electronic 128 

medical record. The CT scans were collected from the hospital’s clinic registry at Sheba 129 

MC. Approval was granted by the Sheba MC institutional review board (7969-20-130 

SMC). Overall, 974 CT scans were collected for the study. 131 

The primary outcome was a binary score of the risk of hip fracture within two 132 

years following the CT scan or a non-fracture risk within 5 years following the CT scan. 133 
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The results obtained from the combined AFE&ML system were used as a risk factor 134 

for sustaining a hip fracture.  135 

Patient population 136 

Inclusion criteria included CT scans with a soft tissue filter, and 120 Peak 137 

kiloVoltage (KVP). Exclusion criteria included: (1) Pathologic fractures, 138 

subtrochanteric or atypical fractures, high energy fractures, metallic implants, and 139 

tumors in the proximal femur; (2) Type 1 diabetes mellitus. Of the 974 CT scans, 507 140 

were excluded because of misfit to the clinical trial protocol. The dataset workflow is 141 

presented in Figure 5. 142 

For each patient, clinical data including the weight, age, height, and whether 143 

he/she was diagnosed with T2DM, were retrieved from the electronic records. 144 

 145 

AFEs 146 

The fully autonomous CTFEA system Simfini was used to perform the strength 147 

analysis of all femurs according to the algorithm previously published in [16, 17, 19, 148 

20] and schematically illustrated in Figure 1. Briefly, the geometry of the femurs is 149 

automatically segmented from the CT scans by a deep-learing U-Net network to 150 

produce a 3D voxel representation of the femur. Inhomogeneous isotropic material 151 

properties are assigned to the centroid of each voxel within the femur based on the 152 

Hounsfield Unit (HU) in the CT scan. The voxels representing the segmented femur 153 

are automatically transformed in a mesh of high order tetrahedral elements‡. Three 154 

loading configurations were applied as presented in Figure 2 and average maximum 155 

principal strains were extracted automatically over a circular region of a diameter of 156 

5mm on the surface of the femur in each region of interest.  157 

                                                 
‡ High order elements have shape functions with a polynomial degree increased hierarchically from 1 

to 8 (each tetrahedral element has 512 shape functions at p=8), allow for curved edges, and allow the 

intrinsic estimation of the error in energy norm since 8 hierarchical FE solutions with increasing 

number of degrees of freedom are obtained. A special numerical integration scheme is used that 

facilitates exact integration of monomials up to 14th order. 
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 158 

 159 

Figure 1 – Schematic description of the Simfini system. a) Retrieval of CT scans from 160 

PACS, b) Segmentation of the two femurs by U-Net and identification of  anatomical 161 

points, c) Generation of the inhomogeneous material data and 3D geometry of both 162 

femurs d) Generating a high-order -finite element mesh, e) Application of three 163 

different boundary conditions and solution of the FE system, f) Extraction of averaged 164 

maximum strains at different locations along the femur, g) Fracture predictions by SVM 165 

algorithm. 166 

 167 

 The three different boundary conditions applied to each femur 168 

A proximal femoral fracture due to a fall on the side is categorized as either a 169 

neck or a pertrochanteric fracture, with an almost equal probability to occur [21, 22]. 170 

Two different load directions induce two different fracture scenarios. These directions 171 

were determined by a former clinical study on 32 patients who experienced a hip 172 

fracture and were CT scanned immediately following the fracture. Fourteen patients 173 

were diagnosed as having a neck fracture (f=8, m=6) and eighteen were diagnosed as 174 

having a pertrochanteric fracture (f=12, m=6) [23]. For the neck fracture group, loading 175 

configuration FallN (see Figure 2) always stresses the superior and inferior neck with 176 

the lowest fracture load and was selected as a good predictor for a femoral neck fracture. 177 

For the pertrochanteric fracture, loading configuration FallP (see Figure 2) stresses in 178 

most of the cases the trochanter but also the anterior and posterior base of the neck. The 179 

loading condition was selected as the preferred predictor for trochanteric fracture (see 180 

also in-vitro experiments “…FE models predicted that the fractures initiate under 181 

compression on the lateral side of the femoral neck” [24]). Illustrative examples of the 182 

two loading conditions and the maximum compressive strained locations are presented 183 

in Figure 2. FallN predicts a neck fracture at the superior neck in compression. FallP 184 

also predicts a pertrochanteric fracture in compression. Therefore, it is conceivable to 185 

https://www.sciencedirect.com/topics/engineering/femoral-neck
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consider both. The application of multiple loading conditions to best represents a 186 

sidewise fall condition has been confirmed by in-vitro experiments “FE-strength from 187 

multiple loading conditions better-classified fracture cases from controls….. Only FE-188 

strength from multiple loading conditions remained significant in age- and aBMD-189 

adjusted models” [25]. 190 

Stance loading (along the vector connecting the head and intercondylar notch) 191 

also induces high strains in the superior and inferior neck regardless of the fracture's 192 

actual location. AFE results under this loading condition are also considered when 193 

determining the risk of fracture. The magnitude of all loads is normalized by the 194 

patient’s body weight. In the AFE the total magnitude of all applied loads is 2.5 times 195 

the patient’s weight. 196 

 197 

Figure 2 – Definition of boundary conditions for sideways fall configuration; FallN is 198 

determined by γ = 10° and δ = 15° and FallP by γ = 30° and δ = 45°. Figures with 199 

colors representing displacements due to boundary conditions are taken from [26] 200 

 201 

Since the γ and δ angles are determined by anatomical points, the algorithm 202 

performs best if at least 20 mm below the lesser trochanter is visible in the CT scan. A 203 

Borderline case is when only the lesser trochanter is visible. CT scans that do not 204 
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include the entire lesser trochanter are disqualified from being biomechanically 205 

analyzed. 206 

Average maximum principal tensile strains (denoted by E1) and average 207 

minimum principal compression strains (denoted by E3) are automatically computed in 208 

each of the areas of interest, for each loading condition: Neck superior and inferior, 209 

Trochanter posterior and anterior, Head superior and inferior and Lesser Trochanter 210 

inferior, see Figure 3. Head movement and bone stiffness (force magnitude divided by 211 

head movement) as well as moment applied and maximum and minimum Young’s 212 

modulus in the femur are also computed. 213 

 214 

        215 

 216 

Figure 3 – The various locations (Head Superior, Head Inferior  Neck Superior, 217 

Neck Inferior, Trochanter Posterior, Trochanter Anterior, Head Center) in the 218 

proximal femur at which strains are computed by the AFE (left two figures), 219 

maximum compressive principal strains at the neck and intertrochanteric regions due 220 

to two different sidewise fall loadings (right two figures) 221 

 222 

 223 

Combining biomechanical data with patient data and application of machine learning 224 

techniques 225 

Statistical learning models, and particularly ML have been recently used to 226 

automatically post-process many data combinations [27]. Here, we present a ML model 227 

that combines patient data with computational biomechanics results to predict the risk 228 

of hip fractures. The ML model was trained separately for the T2DM group and the 229 

non-T2DM group.  230 

 The available samples were shuffled and split 0.8 for training and 0.2 for testing. 231 

Due to the small train set, we used cross-validation over the train set only. Cross-232 

validation is a technique that allows one to estimate the performance of machine 233 

learning models on unseen data. We applied the k-fold cross-validation method, where 234 

the data was divided into k=6 subsets. The model was then trained on 5 of these subsets 235 
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and evaluated on the remaining one. This process was repeated 6 times, with each 236 

subset being used as the validation set once (Figure 5). We calculated the mean and 237 

standard deviation of all statistical metrics (F1, precision, etc) over the left-out subsets 238 

to ensure the chosen threshold is a good fit for our model to verify its generalization 239 

ability. In that manner, we were able to obtain an estimate of the model's performance 240 

that is not affected by the specific data used for training and validating. Then we applied 241 

the model, with the chosen threshold, over the independent test set (the remaining 20% 242 

of the data). 243 

The available patient dataset is unbalanced thus we had to prevent the ML model 244 

from becoming biased toward the predominant class. We used random over-sampling 245 

to balance the unbalanced training dataset, i.e. balancing the data by replicating the 246 

minority class samples (a method that does not cause any loss of information [28]). 247 

Over-sampling wasn’t used either for the folded-out set in each training/validation split, 248 

or for the independent testing set that was separated at the preprocessing procedure. 249 

Each dataset was normalized by removing the mean and scaling each feature to unit 250 

variance. The training samples are given to the model for creating the inference 251 

mapping function from the domain of features to the label domain – trying to maximize 252 

the number of samples classified correctly but keeping the problem generalized and not 253 

overfit. The testing/validation samples are the new cases not used for training the ML 254 

process. Based on these, the predicted specificity and sensitivity are computed (thanks 255 

to a comparison of the real known labels and the model-predicted ones). 256 

We considered two ML algorithms: Random Forest (RF) and Support Vector 257 

Machine (SVM) [29]. Both algorithms are well suited for a mixture of numerical and 258 

categorical features. The SVM training algorithm constructs a model that maps training 259 

examples to points in space to maximize the width of the gap between the two 260 

categories. New examples are then mapped into that same space and predicted to belong 261 

to a category based on which side of the gap they fall. A detailed discussion on SVM, 262 

including the mathematical foundations and the various factors that influence its 263 

performance, is provided in [37]. The dominant factor we used is the Nu parameter to 264 

control the number of support vectors [30]. 265 

RF  is an ensemble learning method for classification that operates by 266 

constructing a multitude of decision trees at training time. For classification tasks, the 267 

https://en.wikipedia.org/wiki/Ensemble_learning
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Decision_tree_learning
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output of the RF is the class selected by most trees. Random decision forests correct for 268 

decision trees' tendency to overfit to their training set.  269 

RF and SVM fracture/non-fracture predictions for the two groups were compared 270 

based on the receiver-operating characteristic curve (ROC) and the area under the curve 271 

(AUC). The operating point threshold for the inference model was chosen at the point 272 

with the highest F1 score for the cross-validation set. Both RF and SVM results are 273 

very similar with slightly better performance for the SVM. Therefore, SFM was the 274 

chosen method. The sensitivity, specificity, and AUC of the SVM for the T2DM group 275 

and the non-T2DM group (computed based on 20% of the CT scans) are presented in 276 

the Results section. A total of 41 features were used in the SVM algorithm as detailed 277 

in Table 1. 278 

Table 1: List of 41 features used in the SVM algorithm: 37 generated by the AFE and 279 

4 related to patient data. 280 
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 281 
 282 

Statistical Analysis and Verification of Results 283 

 284 

The predictive performance of the risk of fracture criteria was evaluated for its 285 

specificity, sensitivity, and AUC as follows. “Sensitivity” is defined as the percentage 286 

of patients for whom fractures were correctly predicted and occurred within two years 287 

of the CT scan.  “Specificity” is defined as the percentage of patients correctly 288 

identified as fracture free for 5 years following the scan. To determine the uncertainty 289 

of the estimates of sensitivity and specificity, 95% confidence intervals (CIs) are 290 

calculated for the test set according to [31]. 291 

https://en.wikipedia.org/wiki/Test_set
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The receiver-operating characteristic curves (ROC) were generated and the area 292 

under the receiver-operating characteristic curve (AUC) was computed and reported.  293 

 294 

To further verify the performance once the algorithm was established, the SVM 295 

was applied to the 17 additional CT scans for which only one femur was successfully 296 

analyzed (due to presence of an implant, pre-existing fracture, etc.). Within this cohort, 297 

thirteen patients were non-T2DM, 7 experienced a hip fracture, and 6 with intact 298 

femurs. Four patients were T2DM, 2 experienced a hip fracture and 2 with intact 299 

femurs.  300 

 301 

 302 

RESULTS 303 

 304 

A total of 974 clinical CT scans were retrieved, generated by several different 305 

scanners (manufactured by GE and Phillips). Pixel spacing for the scans was between 306 

0.57 and 0.98 mm. Although slice thickness was between 0.63 and 3 mm, most scans 307 

had a 2 mm slice thickness. No duplicate CT scans for any patients were identified in 308 

the cohort. Patients of the study group were selected by one of the researchers (EK) 309 

who was blind to the content of the scans: A list of CT accession numbers was generated 310 

from the Sheba Medical Center radiology department information system. Then, the 311 

corresponding CTs were retrieved from the Sheba Medical Center radiology 312 

department PACS in Digital Imaging and Communications in Medicine (DICOM) 313 

format after anonymization of the DICOMs meta-data fields. 314 

 315 

507 CTs were excluded from the study for not complying with the protocol (the 316 

majority because the femur was “short”§). CT scans in which the lesser trochanter is 317 

visible but included less than 20 mm below the trochanter were denoted ``borderline’’. 318 

Typical examples of short, borderline, and standard CT scans are shown in Figure 4. 319 

CTs were excluded if: 320 

a) The CT scan did not include the entire lesser trochanter. 321 

b) A metallic implant was present that resulted in artifacts in the 322 

proximal femur. 323 

c) Tumors were clearly visible in the proximal femur. 324 

                                                 
§ A “short” CT is defined as a CT which does not contain at least the lesser trochanter of one of the two 

femurs in the scan. 
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d) A fracture was reported, but it was either caused by a high-325 

energy trauma or occurred in the distal femur. 326 

 327 
Figure 4 – Illustrative examples of Short (Left), Borderline (Middle), and standard 328 

(Right) femurs in CT scans. 329 

467 CTs (Standard & Borderline) were suitable for Simfini analysis (48% of all CT 330 

scans collected). Twenty-two of these could not be retrieved successfully from the 331 

PACS, Simfini issued an error message for 12 CTs (failed to segment the femur or to 332 

generate a finite element mesh), and for 17 CTs the analysis was successful for one 333 

femur only. Therefore, the success rate of Simfini was (934-44-24-17)/934 = 91%, 334 

resulting in data for 836 femurs representing 418 CT scans. Table 2 summarizes the 335 

number of Standard and Borderline femurs in the study and control group. None of the 336 

scans had calibration phantoms. Overall, 568 femurs were acquired by GE scanners and 337 

268 femurs by Phillips scanners. 338 

 339 

Table 2: Summary of Standard/Borderline femurs for the study and control groups 340 

that were successfully analyzed by Simfini. 341 

  Standard Border Total 

# of femurs without a fracture within 
five years after CT 204 274 478 

# of fractured femurs 104 254 358 

Total 308 528 836 

 342 

A flowchart illustrating the femur selection process for the Simfini analysis is presented 343 

in Figure 5. 344 
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 345 
Figure 5 – Case selection process. 346 

 347 

Table 3 summarizes the distribution of the 836 femurs of T2DM and non-T2DM 348 

patients that were successfully analyzed by Simfini. 349 

Table 3: Summary of the number of femurs for T2DM and non-T2DM patients 350 

successfully analyzed by Simfini. 351 

  Intact Fractured Total 

T2DM patients 118 164 282 

Non-T2DM patients  314 240 554 

Total 432 404 836 
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 352 

Table 4 summarizes the average age, weight, and height of the patients for which 353 

Simfini analyses were successfully performed. 354 

 355 

Table 4: Summary of age, weight, and height (with standard deviation) and gender 356 

for patients successfully analyzed by Simfini. 418 CT scans (836 femurs) 357 

 # of 
CTs 

Male/Female Avg Age [years] Avg Weight [kg] Avg Height [cm] 

Fx T2DM 82 35M/47F 75.8±8.4 71.5±15.8 164±8.6 

Intact T2DM 59 19M/40F 77.5±9.4 69.3±16.3 163±9.7 

Fx non-T2DM 157 46M/111F 75.8±9.4 66.0±17.4 163±8.8 

Intact non-T2DM 120 36M/82F 75.9±9.3 67.8±13.3 162±8.6 

 358 

There were no statistically significant differences between the study and the 359 

control groups regarding age, weight, and height (Table 4).  360 

For each patient, the strains computed by Simfini under the different loading 361 

conditions were extracted and shown as an example for FallN and FallP in Figure 6.362 

 363 

Figure 6 – Simfini computed strains (tensile E1 and compressive E3) under FallN and 364 

FallP loadings (2.5 body weights) for a typical patient. 365 

 366 

The SVM cross-validation performance is summarized in Table 5a and the 367 

corresponding receiver operating characteristic (ROC) curves are presented in Figure 368 

7. The areas under the curve (AUC) values for the ROC curves are also reported in 369 

Table 5a. The SVM test set predictions are summarized in Table 5b. The p-value of all 370 

dataset configurations was less than 0.01.  371 
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Table 5a: SVM cross-validation predictions mean values and standard deviation (in 372 

parenthesis) of the sensitivity, specificity, precision, and AUC. 373 

 374 

Mean 

(Std) 

F1 Score Sensitivity 

(STD) 

Specificity 

(STD) 

Precision AUC for 

the cross-

validation 

set 

T2DM Cross-validation 0.81 

(0.03) 

0.77 

(0.09) 

0.82 

(0.04) 

0.89 

(0.06) 

0.92 

Non-T2DM Cross-validation 0.78 

(0.04) 

0.81 

(0.08) 

0.80 

(0.05) 

0.79 

(0.05) 

0.84 

Combined T2DM and Non-

T2DM Cross-validation 

0.78 

(0.02) 

0.8 

(0.03) 

0.78 

(0.06) 

0.83 

(0.04) 

0.88 

 375 

 376 

 377 

 378 

 379 

 380 

 381 

 382 

 383 

 384 

 385 

 386 

 387 

Figure 7 – Receiver operating characteristic (ROC) curves for the T2DM population 388 

(Upper-left), the non-T2DM population (Upper-right), and the Combined 389 

T2DM&Non-T2DM population (Lower-middle) for the cross-validation set, 390 

demonstrating an area under the curve (AUC) of 0.92, 0.84 and 0.88 391 

correspondingly. 392 

 393 
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Table 5b: SVM test set predictions in terms of sensitivity, specificity (with 95% CI), 394 

and precision. 395 

 396 

 

F1 

Score 

Sensitivity 

(95% CI) 

Specificity 

(95% CI) Precision 

T2DM- Test set 0.84 92% 

(85-99%) 

88% 

(80-97%) 

0.85 

Non-T2DM- Test set 0.81 83% 

(76-90%) 

84% 

(77-91%) 

0.86 

Combined T2DM and Non-

T2DM Cross-validation 

0.82 86% 

(73-89%) 

79% 

(75-82%) 

0.85 

It is important to emphasize that no attempt was made to optimize the outcome of the 397 

SVM algorithm by including or excluding input features.  398 

 399 

Further verification 400 

The seventeen patients for which the AFE failed to analyze both femurs that were 401 

not included in the SVM analysis were used for further verification of the accuracy in 402 

predicting hip fracture risk. Using the AFE results for one femur and the trained SVM 403 

algorithm, the following statistics were obtained: for the four T2DM patients, the 404 

sensitivity was 100% and the specificity was 67%. For the non-T2DM patients (13 405 

patients) the sensitivity was 75% and the specificity was 80%.  406 

 407 

 408 

DXA data 409 

Only eleven of the 418 patients who were AFE analyzed had available DXA 410 

scores in the Sheba MC database: Two T2DM patients, one who fractured and one who 411 

did not, both had a T-score of -1.5 at the proximal femur and -1.9. -2.0 at the lower 412 

neck. Among the nine non-T2DM patients, three fractured with a T-score of -1.5, -1.9, 413 

-2.2 at the proximal femur and -1.6, -2.2 at the neck. Six non-T2DM patients who did 414 

not fracture had a T-score between 0.5 and -1.4 at the proximal femur and -0.4 to -2.2 415 

at the neck. None of the 4 who fractured had a T-score below -2.5, i.e. diagnosed as 416 

osteoporotic. The DXA data is too limited for statistical analysis, however it 417 

demonstrates that none of those who fractured had a densitometric diagnosis of 418 

osteoporosis (the average age was 75 years old, similar to the AFE cohort). 419 

 420 

 421 
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DISCUSSION 422 

Simfini is a fully autonomous finite element system that can be easily used for 423 

opportunistic biomechanical analysis of abdomen or pelvis CT scans of the femur. The 424 

biomechanical analysis is fused to an ML (SVM) algorithm and provides highly 425 

accurate hip fracture risk prediction in elderly T2DM and non-T2DM populations. 426 

Forty-eight percent of the abdominal and pelvic CT scans evaluated were appropriate 427 

for the AFE (very similar to the percentage reported in [14]) out of which ninety-one 428 

percent were successfully analyzed by the AFE (i.e. forty-three percent of the available 429 

lower abdomen and pelvic CT scans were successfully analyzed). An excellent 430 

prediction of hip fractures within the next two years for both T2DM patients (a group 431 

that possesses a special challenge) as well as non-T2DM ones was demonstrated.  432 

The further verification on seventeen patients for which the AFE was able to 433 

analyze only one femur showed that the outcome corresponds well with the statistical 434 

data presented. 435 

The CT utilization rate in our study is on par with other published studies using 436 

opportunistic screening tools: Dagan et al reported an 83.6% utilization rate [32] and Adams et 437 

al reported an 86% utilization rate [13], both in very large and diverse populations.  438 

During the past five years, several studies have shown the feasibility of using 439 

opportunistic CT scans to predict osteoporotic fractures [33], specifically hip fractures 440 

[9, 34]. The only autonomous algorithm (based entirely on ML) [32] was trained and 441 

verified on over 48,000 CT scans to assess the 5-year risk of osteoporotic fractures. The 442 

ML predictions for a hip fracture were shown to be the same as the FRAX performance 443 

without BMD input. The ML algorithm relies mostly on BMD assessment from CT 444 

scans. A sensitivity of 92.6%, specificity of 36.9%, and AUC of 0.76 were achieved, 445 

which were almost identical to FRAX performance [32]. 446 

 447 

FEA determination of femoral strength has been shown to better predict hip 448 

fracture than hip BMD [35, 36]. Several previous studies have demonstrated the use of 449 

femoral strength measurement derived from existing CT scans to predict hip fracture 450 

risk [11, 13, 14]. In [13], 1,959 patients aged 65 or older who sustained a hip fracture 451 

and who had a prior pelvic or abdominal CT scan and a DXA, were compared to a sex-452 

matched group. The study population included 30% diabetic patients, but there was no 453 

sub-analysis to determine the validity of this method specifically in those patients. In 454 
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[14] 490 lower abdomen CT scans out of 1158 were suitable for FEA (43.2%) out of 455 

which 123 suffered a fracture within 5 years of the CT scan date. Fracture prediction 456 

by combining both BMD and FE-estimated bone strength was not statistically different 457 

than using either BMD or FE-estimated bone strength alone. Predicting fractures in 458 

women determined the greatest AUC of 0.710 by using both BMD and FEA (sensitivity 459 

48% and specificity 84%). The study reported in [11] used very uniform CT scans, all 460 

resulting from a single CT scanner with a slice thickness of 1mm and all having 461 

calibration phantoms. This database was unusual because typical clinical scans are from 462 

a variety of CT scanners, have lower resolution and none use calibration phantoms.   463 

CTFEA accurately predicts one of the most important components required to 464 

determine the risk of femoral fracture – the bone strength under a load that is believed 465 

to represent a sidewise fall. One of the reasons CTFEA is not commonly used in clinical 466 

practice is the manual labor and expertise required to set up the analysis and interpret 467 

the output – which may be a lengthy and subjective process. Also, the patient’s weight 468 

was not taken into consideration in former CTFEAs, which in the authors’ opinion is 469 

an important component.  470 

In order to address the perceived need for improved fracture risk assessment, 471 

we developed the fully AFE system [16] that automatically retrieves CT scans from a 472 

hospital’s PACS, segments the femurs by a DL algorithm, automatically performs FE 473 

analyses with physiological loads, and applies a SVM post-processing algorithm. We 474 

found the most influential factor over the post processing performance is the Nu 475 

parameter that controls the number of support vectors.  The fully autonomous system 476 

demonstrated unprecedented identification of hip fracture risk within 2 years following 477 

the CT scan. In Table 6 we summarize the current system’s performance compared to 478 

the performance reported in former publications.  479 

 480 

Table 6: Summary of the performance of recent methods for identifying risk of hip 481 

fractures: number of CTs considered, sensitivity, specificity, and AUC. 482 

Method (ref) # CTs Sensitivity Specificity AUC 

Current CTFEA&ML T2DM   

(cross-validation set) 
141 

92% 

(77%) 

88% 

(82%) 

 

(0.92) 

Current CTFEA&ML Non-T2DM 

(cross-validation set) 
277 

83% 

(81%) 

84% 

(80%) 

 

(0.84) 

Current CTFEA&ML Combined 

(cross-validation set) 
418 

86% 

(80%) 

79% 

(78%) 

 

(0.88) 
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[14] CTFEA+aBMD  490 48% 84% 0.71 

[11] CTFEA 601   0.71-0.80 

[13] Women CTFEA ~1900 66% 66% 0.70-0.73 

[13] Men CTFEA ~860 56% 76% 0.75 

[32] ML 
~48,0

00 
92.6% 36.9 % 0.76 

[19] CTFEA T2DM 51 89% 76% 0.9 

 483 

In conclusion, this clinical study demonstrates a high accuracy achieved when 484 

predicting the risk of fracture due to a sidewise fall by combining AFE and machine 485 

learning in both T2DM and non-T2DM populations. Since there is a significant clinical 486 

need to develop a reliable risk assessment tool for the T2DM population, implementing 487 

such a tool as an opportunistic measure on a large scale could contribute significantly 488 

to the prevention of osteoporosis-related complications in diabetic patients, specifically 489 

hip fractures.  490 

The proposed AFE may be used in many other clinical applications by assessing 491 

bones’ strength in longitudinal studies to monitor, for example, radiation therapy 492 

influence, medication efficacy, over/under stress, etc. Application of the methodology 493 

to other bones such as the humerus, vertebra, and tibia is another promising outcome 494 

of the presented methodology. 495 

 496 

This study has several limitations: (1) Results were not compared with current 497 

commonly used methods to measure bone strength or assess fracture risk, namely a 498 

DXA or a FRAX score, since the hospital registry in Israel has very limited data on 499 

these for most patients; (2) CTs which do not include the entire lesser trochanter are 500 

excluded from the AFE (about 50% of the overall lower abdomen CT), (3) Data on the 501 

first diagnosis of T2DM for these patients is missing. 502 

The encouraging results pave the path to further clinical and scientific 503 

enhancements. A follow-on research study is planned that will include AFEs of CT 504 

scans in which only a part of the lesser trochanter is visible. Although this approach is 505 

expected to considerably increase the number of usable femur scans in the study, it will 506 

likely see a decrease in sensitivity and specificity of the fracture risk assessment. 507 

Optimal input features to the SVM algorithm will also be investigated, and a 508 

prospective study is planned to use opportunistic CT scans with corresponding DXA 509 

scores to allow direct comparison with the AFE performance. 510 
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Appendix – A Summary of the AFE System (Based on [16,19]) 517 

The femur’s response under physiological loading is well described by the 518 

linear theory of elasticity and although the bone at the macroscopic level is 519 

orthotropic, excellent predictions were obtained using isotropic inhomogeneous 520 

relations* * (see [20] for stance position loading and [38] for sideway fall loading). 521 

Thus, a linear finite element analysis was performed by Simfini. Verification of the 522 

numerical errors was assured by monitoring the error in energy norm and the 523 

maximum and minimum principal strains at the locations of interest as the polynomial 524 

degree over the elements was increased from 1 to 6 or 8.  525 

To realize an autonomous FE analysis, several components are combined. The 526 

automatic identification of the femur's starting and ending CT slices and the femur's 527 

segmentation is obtained by a deep learning algorithm (a U-net algorithm). The U-net 528 

algorithm was trained on 178 femurs and tested on 43 femurs, resulting in a Dice 529 

score of 0.99. Another important component of the AFE is the determination of the 530 

anatomical points (center of femur’s head, intercondylar notch, and center of shaft 20 531 

mm below the lesser trochanter), for the application of the different boundary 532 

conditions.  533 

Pointwise inhomogeneous mechanical properties are then computed at each 534 

voxel in the CT scan. The relationships between Young’s modulus and ash density† † 535 

for cortical and trabecular bone tissue, validated in experimental settings [20], were 536 

used: 537 

𝜌𝐾2𝐻𝑃𝑂4 = 10-3 (a ×HU + b)     [grm/cm3] (A.1) 

ρash = 0.877 × 1.21 × ρK2HPO4 + 0.08 [grm/cm3] (A.2) 

Ecort = 10200 × ρash
2.01 [MPa], ρash ≥ 0.486 [grm/cm3] (A.3) 

Etrab = 2398 [MPa], 0.3 < ρash < 0.486 [grm/cm3] (A.4) 

Etrab = 33900 × ρash
2.2 [MPa], ρash ≤ 0.3 [grm/cm3] (A.5) 

   

Since most clinical CT scans are phantomless, a and b in (1) are estimated by an 538 

                                                 
* *

 An isotropic material has an equal mechanical response when stretched in any direction. An 

inhomogeneous material has a different mechanical response at different locations within the domain. 
† † These relationships are for a soft tissue CT scan with 120 KVP (as all collected CT scan) and 

validated by a set of experiments on fresh frozen femurs [21,28] 
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algorithm that involves HU=0 in air and a histogram of HU in the femurs, using the 539 

0.1% highest HU that is associated with a Young modulus of 20GPa (details are given 540 

in [16]).  The Poisson ratio was set to the constant value of ν = 0.3. 541 

An automatic algorithm is applied which generates a finite element mesh 542 

consisting of tetrahedrons having curved faces followed by an efficient high-order FE 543 

algorithm that solves the system of finite element equations and generates the data of 544 

interest. We present in Figure A.1 two examples of femurs from two patients (which 545 

have a relatively long part of the shaft visible in the CT scan), with the three different 546 

loadings presented (stance and two fall on the side) that are solved sequentially. Each 547 

model has about 9000-10,000 finite elements resulting in about 900,000 degrees of 548 

freedom at p=6. The entire simulation time including the pre and post processing for 549 

two femurs for a patient is about one hour on a standard PC.  550 

Finally, a post-processing algorithm extracts from the finite element solutions 551 

(three different solutions that correspond to three different boundary conditions) 552 

strains in five different anatomical locations along the femur. The maximum and 553 

minimum averaged principal strains on the bone’s surface are then processed and 554 

reported in a file. 555 

 556 

 557 

 558 

  559 

           
 

Figure A.1 – Two finite element models of the left femur of two randomly selected 

patients. The three locations of the applied stance, FallN and FallP loadings on the head 

are shown by blue (in the web publication) and displacement boundary conditions at the 

lateral greater trochanter shown in pink (in the web publication). 
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