
The Influence of Femoral Lytic Tumors Segmentation on

Autonomous Finite Element Analysis

Oren Rachmil:, Kent Myers�, Omri Merose;, Amir Sternheim;,7, and Zohar
Yosibash:

:Computational Mechanics & Experimental Biomechanics Lab, School of Mechanical Engineering, The
Iby and Aladar Fleischman Faculty of Engineering, Tel-Aviv University, Ramat Aviv, 69978, Israel

�PerSimiO, Beer-Sheva, Israel
7Faculty of Medicine, Tel Aviv University, Ramat Aviv, 69978, Israel

;Dept. of Orthopedic Oncology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel

January 25, 2024

Abstract contains 260 words,
Manuscript excluding abstract, tables, figure, bibliography and appendix contains: 3992 words.

Corresponding Author: Prof. Zohar Yosibash, Head - Computational Mechanics and Experimental
Biomechanics lab, School of Mechanical Eng, Faculty of Engineering, Tel Aviv University, Israel,
yosibash@tauex.tau.ac.il

1



Abstract

Background: The validated CT-based autonomous finite element system Simfini [1] is used
in clinical practice to assist orthopedic oncologists in determining the risk of pathological
femoral fractures due to metastatic tumors. The finite element models are created automat-
ically from CT-scans, assigning to lytic tumors a relatively low stiffness as if these were a
low-density bone tissue because the tumors could not be automatically identified.

Methods: The newly developed automatic deep learning algorithm which segments lytic
tumors in femurs, presented in [2], was integrated into Simfini. Finite element models of
twenty femurs from ten CT-scans of patients with femoral lytic tumors were analyzed three
times using: the original methodology without tumor segmentation, manual segmentation of
the lytic tumors, and the new automatic segmentation deep learning algorithm to identify lytic
tumors. The influence of explicitly incorporating tumors in the autonomous finite element
analysis on computed principal strains is quantified.These serve as an indicator of femoral
fracture and are therefore of clinical significance.

Findings: Autonomous finite element models with segmented lytic tumors had generally
larger strains in regions affected by the tumor. The deep learning and manual segmentation of
tumors resulted in similar average principal strains in 19 regions out of the 23 regions within
15 femurs with lytic tumors. A high dice similarity score of the automatic deep learning
tumor segmentation did not necessarily correspond to minor differences compared to manual
segmentation.

Interpretation: Automatic tumor segmentation by deep learning allows their incorporation
into an autonomous finite element system, resulting generally in elevated averaged principal
strains that may better predict pathological femoral fractures.

1 Introduction1

A CT-based autonomous finite element (FE) system named Simfini was developed to compute2

the strains in femurs with tumors [1]. Simfini is used in clinical practice to assist orthopedic oncol-3

ogists in determining the risk of pathological femoral fractures due to the presence of metastatic4

tumors [3, 4]. The FE model, created automatically by analyzing the CT-scan images, does not5

properly incorporate the material properties of lytic tumors because these could not be automat-6

ically identified. The proper treatment of these lytic tumors in the FE model and their influence7

on the FE results is addressed herein following the introduction of a deep learning (DL) algorithm8

which automatically segments lytic tumors in femurs from computed tomography (CT) scans, pre-9

sented in the first part of our study. Specifically, the aim is to evaluate how different are the FE10

result in three different scenarios: the current implementation, incorporating lytic tumors in the11

FE model as identified by a manual segmentation, and incorporating the tumors automatically12

using the DL algorithm.13

Several previous studies have employed FE models to assess the loads that may cause a patho-14

logical fracture in patients with metastatic bone disease. Keyak et. al [5, 6] established a complete15

workflow to construct FE models from quantitative computed tomography (QCT) images. Bone16

densities from QCT images were constructed having mechanical properties with no special treat-17

ment to tumors. Their FE models for the femoral shaft and upper femur matched the breaking18

point and peak force measured in human bone tests with a correlation coefficients R2 � 0.88�0.95.19

These methods are lengthy, demand substantial FE expertise and cannot be applied in routine20

clinical practice. Also, the tumor locations are neglected in the models, introducing potential21

inaccuracies in the vicinity of the tumors.22

Benca et. al [7] employed voxel-based meshing, optimizing automation and robustness against23

mesh distortion. Yet, their nonlinear, voxel-based model underestimated the fracture load by half.24
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Validating the efficacy of FE models, Goodheart et. al [8] analyzed CT scans of patients with25

femoral metastases. Their FE models, simulating walking conditions, showed comparable accuracy26

to Mirels’ score in identifying fracture patients (sensitivity 80%), with superior specificity (86%27

vs. 43%). However, the specific tumor voxels were not segmented nor were treated as a different28

tissue than bone. Moreover, the process introduced is not automatic and cannot be performed by29

a non-FE expert thus cannot be considered as a clinical tool.30

In [1] Yosibash et. al introduced a novel approach of autonomous finite element (AFE) anal-31

ysis for femurs named Simfini. Simfini was tailored for use by clinicians as a decision-support32

system. It evaluates the fracture risk in patients with femoral tumors to assess the need for pro-33

phylactic surgery, and was validated by two retrospective clinical analyses [3, 4]. The automated34

workflow involves: segmentation of both femurs from CT scans using a U-Net network [9], a mesh35

generator, application of boundary conditions based on anatomical points, and an automated FE36

post-processor that creates a report for the clinician providing a clear assessment of bone fracture37

risk. The different components of the AFE are presented in Figure 1. However, Simfini follows the38

ideas presented by Keyak and collaborators and does not identify the lytic tumors, but assigns to39

the voxels with low Hounsfield Units (HU) a reduced Young’s modulus as if these were soft bone40

tissues.41

[Figure 1 about here.]42

The objective is to quantify the influence of explicitly incorporating lytic tumors into the finite43

element (FE) model of femurs on principal strains. These serve as an indicator of femoral fracture44

and are therefore of clinical significance. The new approach is different compared to the prevailing45

methodology that derives the Young’s modulus from CT’s HU for tumor voxels, a strategy rooted46

in [10], suggesting that metastatic lesions minimally affect QCT’s estimation of trabecular bone47

mechanical properties. In addition, the difference in computed principal strains when tumors48

are segmented manually or automatically by a DL algorithm (with adjusted Young’s modulus for49

tumor-identified voxels) is quantified.50

2 Methods51

Ten lower abdominal CT scans of patients with femoral tumors are considered herein. These52

patients were randomly selected as the test case in [2] out of the fifty patients’ CT scans ran-53

domly collected at Tel-Aviv Sourasky Medical Center (TASMC) after receiving approval from the54

institutional review boards (Helsinki committee approval number TLV-17-0532). Full details of55

these patients (Prosp7060, Prosp5060, Prosp1120, Prosp1190, Prosp7020, ProspD100, Prosp1140,56

Prosp5010, ProspB10, Prosp5050) are given in the Appendix of [2]. The 20 femurs in these scans57

served as the basis of our investigation. Tumors were present in 15 femurs at one or several58

locations.59

2.1 Incorporating Tumors into the AFE Analysis60

Femurs were segmented from the CT scans in Simfini by a U-Net architecture [9] with a DSC61

above 0.99 [11], resulting in two 3D masks that accurately represent both femurs. Subsequently,62
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the inhomogeneous mechanical properties of each voxel in this 3D mask were estimated. Although63

bone tissue is anisotropic, under a stance load condition the longitudinal Young’s modulus is the64

dominant material property [12, 13, 14]. It was defined according to the HUs in the CT scans,65

validated in [15].66

The coordinates and Young’s modulus for each voxel were compiled into a text file in which each67

row corresponds to a point in the 3D mask of the femur, containing four columns, the coordinates68

(x, y, z), and the correspondingYoung’s modulus. The file has approximately 500,000 rows, each69

representing a voxel in the femur’s 3D mask. Importantly, the physical coordinates were listed in70

the single-femur-coordinate-system (not the same coordinate system as in the CT scan).71

The text file was then converted into a NIFTI1-format. Tumors were segmented using the72

generated NIFTI file either manually or automatically by the DL algorithm described in the first73

part [2]. A binary mask was generated with all voxels with 1 assigned to tumor voxels and 074

otherwise. The corresponding tumor voxels in the material properties file ”materialproperties.txt”75

were identified by comparing the coordinates from the binary mask with those in the material76

properties file. Then a reduced Young’s modulus was assigned to these tumor voxels. A value of77

3.66 � 1.6 kPa was suggested for the femoral lytic tumors [16]. Given that tumors are substantially78

weaker than bone tissue, the strains within the tumor region are considerably larger. These strains,79

however, are irrelevant as our focus was on the strains within the bone tissue. Also, incorporating80

such low values may cause an ill-conditioned stiffness matrix. Hence, various different values for81

the tumor Young’s modulus such as 1, 50, 100 kPa have been tested to evaluate their impact on82

the AFE. The goal was to accurately represent the contrast in tissue properties between tumors83

and bone while circumventing an ill-conditioned stiffness matrix.84

2.2 Automated FE Analysis85

A curved high-order finite element mesh was automatically generated [1]. This automated mesh86

generator also refines the mesh in regions of interest. Generally, a complete femur can be efficiently87

represented using roughly 4000-6000 high-order tetrahedral elements. The inclusion of tumor data88

presents a numerical challenge, as the tumor boundary may reside in one element, causing a sharp89

change in material properties within an element, leading to potential numerical errors. To mitigate90

these risks, mesh was refined close to the tumor . The entire process, ranging from the acquisition91

of the CT scan data to the creation of a mesh with refinements at tumor regions is illustrated in92

Figure 2.93

[Figure 2 about here.]94

A stance position load of magnitude equivalent to 2.5 times the body weight was applied, based95

on a statistical analysis of measured hip contact forces [17]. This data provides realistic peak hip96

contact forces for various daily activities, such as free walking and climbing stairs. The load was97

applied to the femoral head along a vector that connects the center of the femoral head to the98

estimated intercondylar notch, effectively emulating a stance position [1]. These anatomical points99

were determined for each individual femur, which influenced the location at which force was applied100

1NIfTI (Neuroimaging Informatics Technology Initiative) is a file format commonly used in neuroimaging to store
and exchange neuroimaging data. The format is supported by various software tools and libraries in the field.
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on the surface of the femoral head. The distal part of the femur, defined by the proximal slice of101

the patella, was fully clamped.102

Following the implementation of boundary conditions, the solution of the global system of103

equations was obtained using the Pardiso solver2. To verify the numerical error, an estimation of104

the error in energy norm was computed. The p-FE mesh remained unchanged, while the polynomial105

degree was increased in a hierarchical manner. A sequence of solutions, ranging from p = 6 to 8,106

was employed to determine the relative error in the energy norm. An estimated relative error less107

than 5% was considered sufficiently accurate for the subsequent post-processing phase. If a 5%108

relative error in energy norm at p = 8 was not reached, a more refined mesh was applied and the109

p-extension process was re-initiated.110

In the post-processing phase, the principal strains were computed on the face of each element111

on the bone’s surface, except within the tumor regions (Simfini has been updated to exclude tu-112

mor areas from strain calculations). The femur was partitioned into five anatomical regions: the113

neck, trochanter, proximal shaft, middle shaft, and distal shaft. Within each region, the maxi-114

mum/minimum average principal strain within a circular region having a 5 mm radius, centered115

at this point, was computed. These values served as the criterion for estimating the fracture risk116

for each region [1].117

The effect of the Young’s modulus pEq assigned to tumor voxels was initially investigated. Pa-118

tient Prosp1120 from the test cohort was selected as a representative example.Prosp1120 exhibited119

a significant deterioration in the cortical structure of the middle shaft of the right femur. The120

tumor’s boundaries in this specific case permit precise segmentation. Furthermore, Prosp 1120’s121

left femur, which is free of tumors, served as a control for this study. It allowed us to make a direct122

comparison of average mean principal strains to a tumor-free femur.123

To assess the influence of incorporating the tumors into the FE model, a comparative analysis124

was performed on the CT scans of the ten patients (20 femurs). The mean principal strain in125

each region of both the right and left femurs was compared for the selected ten-patient dataset,126

considering scenarios with and without tumor presence. This comparison involved automatic127

tumor segmentations by DL and by manual segmentations. A comparison of the three strategies128

(no tumors, DL-identified, and manually identified tumors) was performed.129

3 Results130

3.1 Tumors Young’s Modulus Influence on the FE Results131

Figure 3 shows the right femur of Prosp 1120’s alongside the corresponding automatically132

generated mesh, highlighting the region of the bone affected by the tumor133

[Figure 3 about here.]134

The Young’s modulus E assigned to the tumor was adjusted to four values : 100 MPa, 50 MPa,135

1 MPa, and finally 0.003 MPa, according to [16]. The tumor segmentation was performed manually136

and FE solutions from polynomial degree p=6 to p=8 were obtained to assess convergence. As137

2https://pardiso-project.org
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expected, varying tumors’ E affected the strains in the middle shaft of the right femur, where the138

tumor was present. In the other regions of the femur the strains remained unchanged. Table 1139

presents the average maximum principal strains in the middle shaft for differing E.140

[Table 1 about here.]141

Table 1 demonstrates a pattern where, as E decreases from 100 MPa to 0.003 MPa there is a142

minor change in the average maximum principal strains. The maximum change between E � 100143

and E � 0.003 was less than 2% for ϵ1 and less than 3% for ϵ3. Furthermore, convergence is144

observed. The change between p-levels p � 6 to p � 8 for each E was within 1%. These results145

suggest that the influence of the mechanical properties of tumor voxels on the computed maximum146

principal strains is relatively modest. Thus choosing E of 100 MPa for tumors may well represent147

the mechanical properties of the tumor and avoid an ill-conditioned stiffness matrix.148

3.2 Verification of FE Results149

To ensure the convergence of the FE results, manual segmentation for annotating the tumors150

was used, the tumors were “inserted” in the FE models of the twenty femurs, and E � 100MPa151

was assigned to the tumor’s voxels. A p-extension was performed increasing p from 6 to 8 and the152

error in energy norm was monitored so as to decrease below 5% at p � 8. The values of ϵ1 and153

ϵ3 and the number of degrees of freedom (DOF) are presented in Appendix B in Tables 4 and 5154

respectively as the p level is increased.155

In several femurs, an especially dense mesh resulted in DOFs surpassing 5 million. This was156

notably observed in the case of Prosp7020, which had a substantial tumor volume as depicted in157

Appendix B in Figure 8. This led to a dense mesh encompassing a significant portion of the femur,158

thereby increasing computational time.159

In most of the regions of interest, the percent difference between the results at p � 6 and160

p � 7 is less than 5% suggesting that p � 6 provides results of sufficient accuracy. There are161

few exceptions such as the Middle Shaft of the right femur of Prosp7020 which has a difference162

of -16.9% in ϵ1 between p � 6 to p � 7, however the value does not change when increasing the163

p-level to p � 8 (0% difference). Similarly, at the distal shaft a significant difference is between164

p � 7 to p � 8 (35.3%) indicating a lack of convergence at this region. Also the Distal Shaft in165

the left femur of ProspD100 shows a difference of 18.8% from p � 6 to p � 7 but the difference166

decreases to -0.6% for ϵ1 and 0.9% for ϵ3.167

3.3 Assessing the Impact of Tumor Segmentation on AFE Analysis168

Each of the ten patients’ CT scans underwent two AFE pipelines: one using the traditional169

method [1] while the other integrated the manual tumor segmentation. The tumors were assigned170

a Young’s modulus of 100 MPa for this analysis. The tumor manual segmentation was used for an171

accurate comparison between the tumor-inclusive and tumor-exclusive analysis (these serve also172

as a benchmark for DL segmentation as will be shown).173

A comparison of the average maximum/minimum principal strains reported by the AFE post-174

processing stage was conducted. These serve as Simfini’s fracture risk assessments [1]. Table 2175
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presents the average maximum principal strains within each tumor-affected femur region and the176

total volume of tumors within these regions for the patient cohort. In Table 2, only regions affected177

by tumors are reported, as no variations in strains were observed in tumor-free regions.178

[Table 2 about here.]179

Incorporating the lytic tumors in the FE models resulted in larger absolute values for both ϵ1180

and ϵ3, though the extent of this increase varied among patients and femoral regions. In particular,181

a notable increase in strain values in the distal shaft region of patient Prosp7020 R was observed,182

with ϵ1 and ϵ3 rising by 74% and 52% respectively. Conversely, in some regions like the proximal183

and middle shaft for patient ProspB10 L, and the trochanter region for patient Prosp7020 L, no184

change in strain values was observed. There does not seem to be a connection between the volume185

of the tumor and its impact on the calculated principal strains. For example, in the Prosp7020186

Right femur a relatively small tumor in the trochanter region of 12.4 cm3 resulted in an increase187

in ϵ1 by 59%. On the other hand, in the Prosp7060 Left femur a relatively large tumor in the188

proximal shaft of 71.8 cm3 resulted in a minor increase in ϵ1 by 4%.189

In Fig. 4, histograms for the maximum and minimum average principal strains are presented190

emphasizing the effect of manual tumor segmentation. Each bar quantifies the number of cases191

within a specific range of difference compared to traditional FE models.192

[Figure 4 about here.]193

Explicit incorporation of the tumors in the FE models had diverse effects on the strain charac-194

teristics of the affected regions. A minor change of less than 6% was observed in 8 out of 23195

tumor-affected regions. In 9 (out of 23) regions, the difference in ϵ1 exceeded 18%, reaching up to196

74% in one femur. Similarly, in 11 regions ϵ3 exceeded 21% difference. These results emphasize197

the important role of lytic tumors on the biomechanical response.198

3.4 Influence of DL Segmentation on the AFE Results199

The integration of lytic tumor segmentation using DL into the Autonomous Finite Element200

(AFE) pipeline was executed seamlessly. The AFE analysis was conducted twice for each patient201

in our test cohort: once utilizing manual segmentation and once employing automated DL segmen-202

tation. The computed average principal strains were then compared. Lytic tumors were assigned a203

modulus of E � 100 MPa, and the results were computed at a polynomial order of p � 6. The focus204

was on variations in tumor-affected regions, as non-affected regions exhibited almost no differences205

in strain values. The differences between manual and DL segmentation are summarized in Table 3.206

Additionally, the reported Dice Similarity Coefficient (DSC) scores are presented based on voxels207

segmented throughout the entire femur. Furthermore, the differences in tumor volume between208

manual and DL segmentations are presented, specifically accounting for the tumor volume within209

each region.210

The results show an overall agreement between manual and automatic segmentations, with the211

majority of cases exhibiting less than 20% difference. However, this agreement is not consistently212

observed, as there are instances where a high Dice Similarity Coefficient (DSC) does not result in213
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a small difference in average principal strains between manual and DL segmentations. Also, no214

direct correlation was found between variations in tumor volume (as segmented manually and by215

DL) and differences in principal strains.216

[Table 3 about here.]217

The maximum DSC was 0.91 for Prosp7060 L and the minimum was 0 for Prosp7020 R,218

ProspB10 L and both the left and right femurs of Prosp5050. A large difference in strains was219

obtained in the right femur of Prosp 1120 between the DL and manual segmentations, despite a220

high DSC value of 0.85 for the DL segmentation.The mesh for this femur, along with refinements221

at the tumor and ϵ1 are illustrated in Figure 3. A significant difference in ϵ1 is evident; Figure 5222

presents the principal strains on the bone’s surface near the tumor (indicated by the blue region)223

in the middle shaft of the Prosp1120 right femur. The DL algorithm did not segment the entire224

tumor, leading to formation of ”isolated islands” of assumed healthy bone tissue within the tumor225

region. Consequently, as these ”islands” exhibited low Hounsfield Unit (HU) values, indicating226

”soft” tissue, the strains were large, resulting in a considerably larger averaged principal strain227

(highlighted by red circles in Fig. 5). This artifact contributed to erroneously larger average228

maximum principal strains compared to the manual segmentation. Conversely, a low DSC of 0.46229

for Prosp7060 R at the trochanter region, resulted in only an 11% difference in ϵ1 and virtually no230

difference in ϵ3.231

[Figure 5 about here.]232

The histograms in Fig. 6 provide a visual representation of the differences in mean principal233

strains between manual and DL segmentations. Each bar in the histogram was annotated with the234

number of cases within that specific range of strain difference. For ϵ1, 18 out of the total 23 cases had235

differences of less than �23%. For ϵ3, 19 out of the 23 had differences of less than �21%. Figure 7236

displays a scatter plot of the average maximum principal strain in the tumor-affected regions for the237

three different tumors representation methodologies. In 18 of the 23 locations, the no-segmentation238

method yielded the smallest strains. The discrepancy between the segmentation methods and the239

traditional no-segmentation approach (which disregards tumors) revealed differences between the240

two methods.241

[Figure 6 about here.]242
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[Figure 7 about here.]243

4 Discussion244

An automatic lytic tumor segmentation algorithm was integrated into the Autonomous Finite245

Element (AFE) pipeline, and the resulting impact on average strains, serving as a surrogate for246

fracture risk, was assessed across a cohort of 10 patients. The conventional AFE pipeline, which247

categorizes tumors as ’soft bone tissues’ based on their low Hounsfield Units (HUs), was com-248

pared to the AFE pipeline following manual tumor segmentation by an analyst. Additionally,249

the fully automatic AFE pipeline, incorporating tumor segmentation by DL, was included in the250

comparative analysis.251

Because the average principal strains in the bone tissue are the ones that determine the fracture252

risk, strains in the tumors are of course of no interest and should be discarded. It was first253

demonstrated that the very low Young’s modulus suggested for the lytic tumors in [16] (0.003254

MPa) which can result in ill-conditioned stiffness matrices, can be replaced by a Young modulus255

Young’s modulus of 100 MPa, with an influence on the average strains which is less than 3%.256

A Young’s modulus of 100 MPa for the lytic tumor is two orders of magnitude smaller than the257

healthy cortical bone tissue. As expected, the low Young’s modulus only influences the strains in258

the close vicinity of the tumor, but not in the tumor-free locations.259

The convergence analysis performed on the average maximum principal strains, ϵ1 and ϵ3, in260

tumor-affected femoral regions, offers key insights into the numerical accuracy of the results. A261

relative difference between solutions at p � 6 and p � 8 smaller than 5% was considered as a262

converged verified solution. This was the case for many regions, indicating successful convergence263

already at p � 6. In few regions a larger difference was noticed, suggesting the need to use p � 8264

solutions. Nevertheless, a recommendation is to use p � 6 as it offers satisfactory accuracy within265

an acceptable computational time of a couple of hours on a desktop.266

The influence of integrating manual tumor segmentation into the AFE pipeline was then evalu-267

ated. Comparing the average maximum principal strains between the traditional method (tumors268

are not specifically segmented and a trabecular-like Young’s modulus is assigned as if it was a269

bone tissue with a relatively low HU) and the new approach, showed generally an increase in the270

absolute values of both ϵ1 and ϵ3. The degree of this increase varied among patients and across271

different femoral regions and tumor sizes. The analysis indicated that segmenting the tumor re-272

sulted in a broad spectrum of effects on the strain characteristics within tumor-affected femoral273

regions. These findings highlighted the influence of lytic tumors on the biomechanical response in274

the affected femoral regions and advocated for the explicit representation of the tumors in the FE275

models.276

The histogram in Figure 6 represents the average max and min principal strain obtained by277

the manual and DL segmentation methodologies. The differences in most of the cases were within278

22% difference. Out of the five outliers, three were the result of a DSC of 0. For example, in279

the Proximal Shaft and Middle Shaft of ProspB10 left femur, a significant difference was noticed280

between the manual and DL segmentation methodologies. The DSC for this femur was 0, i.e. the281
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manual segmentation did not identify any tumor whereas the DL algorithm erroneously segmented282

a tumor (False-Positive occurrences). This erroneous identification of a tumor had a large impact283

with strain difference of 49% for the middle shaft region. This phenomenon, however, was not284

detected in other femoral regions.285

4.1 Conclusions286

In most cases the results obtained using manual segmentation are close to these obtained by287

the automatic DL segmentation, except for several outliers, implying the possible use of the later288

in an automatic finite element algorithm. Nonetheless, high DSC scores for the DL algorithm or289

a small difference in tumor size do not guarantee small differences in strains. This implies that290

minor alterations at the tumor boundaries may lead to shifts in fracture risk assessment.291

4.2 Limitations and Future Required Research292

Several limitations in our study may be addressed by future required research activity:293

– A limited cohort size for the test dataset was considered, which might not capture the full range294

of variability present in a larger population.295

– Our analysis was confined to a single loading condition, potentially limiting the comprehensive-296

ness of the biomechanical insights derived.297

– The main focus in this work is on lytic tumors. The findings might not be directly applicable298

to other tumor types or pathologies. Mixed and blastic tumors impact on the AFE results299

are planned to be investigated.300

– The implications of our results will be validated in a follow-up publication by clinical ob-301

servations. Specifically, the results will be cross-referenced with actual patients who have302

experienced femur fractures due to tumors. A similar study as in [3] is warranted to deter-303

mine whether explicit segmentation of tumors may better predict patients at high risk of a304

pathological fracture.305

– Mesh refinement in the tumor region may be optimized by employing two distinct meshes for306

the healthy bone tissue and tumor and low polynomial degrees could be used for the shape307

functions in the elements in the tumor region.308

– The medullary cavity is represented in Simfini as a soft bone tissue known to have a minor309

effect on the biomechnical response in healthy femurs. The impact of such a representation310

on the biomechanical response should be re-evaluated for femurs with lytic tumors.311

Acknowledgements312

OR, ZY and AS acknowledge the support of this research by the Israel Ministry of Science and313

Technology under the Tenth Call of Israel-Italy Scientific collaboration.314

10



References315

[1] Z. Yosibash, K. Myers, N. Trabelsi, and A. Sternheim. Autonomous FEs (AFE) - A stride316

toward personalized medicine. Comp. Math. App., 80:2417–2432, 2020.317

[2] O. Rachmil, M. Artzi, M. Iluz, I. Druckmann, O. Merose, Z. Yosibash, and A. Sternheim.318

Autonomous finite element analyses of femurs with metastatic tumors. Part I - Segmentation319

of femoral tumors by nnU-Net. Submitted for Publication, 2023.320

[3] A. Sternheim, O. Giladi, Y. Gortzak, M. Drexler, M. Salai, N. Trabelsi, C. Milgrom, and321

Z. Yosibash. Pathological fracture risk assessment in patients with femoral metastases using322

CT-based finite element methods. A retrospective clinical study. Bone, 110:215–220, 2018.323

[4] A. Sternheim, F. Traub, N. Trabelsi, S. Dadia, Y. Gortzak, N. Snir, M. Gorfine, and Z. Yosi-324

bash. When and where do patients with bone metastases actually break their femurs? A325

CT-based finite element analysis. Bone & Joint Jour, 102B(5):638–645, 2020.326

[5] JH Keyak, TS Kaneko, J Tehranzadeh, and HB Skinner. Predicting proximal femoral strength327

using structural engineering models. Clinical Orthopaedics and Related Research, 437:219–228,328

August 2005.329

[6] J.H. Keyak, T.S. Kaneko, S.A. Rossi, M.R. Pejcic, J. Tehranzadeh, and H.B. Skinner. Predict-330

ing the strength of femoral shafts with and without metastatic lesions. Clinical Orthopaedics331

and Related Research, pages 161–170, 2005. 2005b.332

[7] E. Benca, A. Synek, M. Amini, F. Kainberger, L. Hirtler, R. Windhager, W. Mayr, and D.H.333

Pahr. Qct-based finite element prediction of pathologic fractures in proximal femora with334

metastatic lesions. Sci. Rep., 9:1–9, 2019.335

[8] J.R. Goodheart, R.J. Cleary, T.A. Damron, and K.A. Mann. Simulating activities of daily336

living with finite element analysis improves fracture prediction for patients with metastatic337

femoral lesions. J. Orthop. Res., 33:1226–1234, 2015.338

[9] O Ronneberger, P Fischer, and T Brox. U-Net: Convolutional networks for biomedical image339

segmentation. In N Navab, J Hornegger, WM Wells, and AF Frangi, editors, Medical Image340

Computing and Computer-Assisted Intervention – MICCAI 2015, pages 234–241. Springer341

International Publishing, 2015.342

[10] TS Kaneko, JS Bell, MR Pejcic, J Tehranzadeh, and JH Keyak. Mechanical properties, density343

and quantitative ct scan data of trabecular bone with and without metastases. J Biomech,344

37(4):523–530, Apr 2004.345

[11] Z. Yosibash, Y. Katz, N. Trabelsi, and A. Sternheim. Femurs segmentation by machine learn-346

ing from CT scans combined with autonomous finite elements in orthopedic and endocrinology347

applications. Comp. Math. Appl., 2023. In Print.348

[12] L. Peng, J. Bai, Z. Zeng, and Y. Zhou. Comparison of isotropic and orthotropic material349

property assignments on femoral finite element models under two loading conditions. Med.350

Eng. Phys., 28:227–233, 2006.351

11



[13] H. Yang, X. Ma, and T. Guo. Some factors that affect the comparison between isotropic352

and orthotropic inhomogeneous finite element material models of femur. Med. Eng. Phys.,353

32:553–560, 2010.354

[14] N. Trabelsi and Z. Yosibash. Patient-specific fe analyses of the proximal femur with orthotropic355

material properties validated by experiments. ASME J. Biomech. Eng., 155:061001–1–061001–356

11, 2011.357

[15] Z. Yosibash, R. Plitman Mayo, G. Dahan, N. Trabelsi, G. Amir, and C. Milgrom. Predicting358

the stiffness and strength of human femurs with realistic metastatic tumors. Bone, 69:180–190,359

2014.360

[16] C.M. Whyne, S.S. Hu, K.L. Workman, and J.C. Lotz. Biphasic material properties of lytic361

bone metastases. Annals of Biomedical Engineering, 28:1154–1158, 2000.362

[17] G. Bergmann. OrthoLoad Database. http://www.OrthoLoad.com, 2008.363

12

http://www.OrthoLoad.com


[Table 5 about here.]378

[Figure 13 about here.]379
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Figure 1 Illustration depicting the distinct components of Simfini (from [1].)
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Figure 2 Mesh generation and refinement workflow.
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Figure 3 Prosp1120’s right femur. (a) Displays the bone in the CT scan with delineated tumor
around the middle shaft as observed by the analyst (marked by a red polygonal boundary). (b) +
(c) Presents the p-mesh, with and without local refinement around the tumor in the middle shaft
region. (d) shows the map of ϵ1 principal strain on the original mesh while (e) shows it on the
refined mesh. E � 100MPa was used.
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Figure 4 Histogram of average principal strain differences between traditional and manual tumor
segmented FE models. Top: ϵ1, Bottom: ϵ3.
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Figure 5 Principal strains ϵ1 for Prosp1120. Left: No segmentation of tumor, Middle: Manually
segmented tumor, Right: DL segmented tumor with zoom-in on the infected tumor area.
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Figure 6 Histogram illustrating differences in computed average maximum principal strains (ϵ1
and ϵ3) between manual and DL automatic tumor segmentation. Top: ϵ1, Bottom: ϵ3.

22



Figure 7 Scatter plot of the maximum average ϵ1 for three tumor segmentation strategies (no-
segmentation, manual, and DL) in all femoral regions affected by tumors. Each region is delineated
by a thick horizontal line, dividing the plot into distinct columns. The table below provides the
calculated strains for each method per region, alongside a legend for a clearer interpretation of the
graph.
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Table 1 Comparison of average maximum principal strains (Compression and Tension) for vary-
ing E at different polynomial orders (p) in the middle shaft of the right femur of patient Prosp1120.

E (MPa)
Tension (ϵ1) [µStrain] Compression (ϵ3) [µStrain]

p=6 p=7 p=8 p=6 p=7 p=8

100 1391 1397 1400 �3705 �3716 �3729
50 1400 1406 1409 �3753 �3764 �3779
1 1410 1417 1420 �3805 �3821 �3838

0.003 1411 1418 1422 �3808 �3828 �3859
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Table 2 Difference in the average principal strain at tumor-affected femoral regions between
Traditional (T), i.e. no segmentation of tumors, and manual tumor segmentation (MS) FE models.
FE solutions at p � 6 were used.

Femur # Region Tumor
Vol. (cm3)

ϵ1 Diff ϵ1 (%) ϵ3 Diff ϵ3 (%)

T MS T MS

Prosp5010 R Trochanter 5.9 1742 1643 �6.0 �2836 �2924 3.0
Prosp7060 L Distal Shaft 49.3 407 649 37.0 �1032 �1210 14.7
Prosp7060 L Proximal Shaft 71.8 1580 1643 4.0 �2681 �2902 7.6
Prosp5060 L Middle Shaft 6.3 1019 1088 6.0 �1769 �2053 13.8
Prosp5060 L Distal Shaft 25.5 782 1234 37.0 �1761 �2387 26.2
Prosp1120 R Middle Shaft 21.5 1265 1391 9.0 �3485 �3705 5.9
Prosp1140 R Trochanter 10.0 1293 1507 14.0 �3935 �4851 18.8
Prosp1140 R Proximal Shaft 29.8 2386 3610 34.0 �6932 �9078 23.6
Prosp1140 R Neck Superior 15.2 2992 4667 36.0 �2687 �3615 25.6
Prosp1190 L Neck Superior 11.3 6231 6903 10.0 �4889 �6931 29.4
Prosp5050 R Trochanter 0.3 1796 1796 0.0 �2941 �2941 0.0
Prosp7020 R Middle Shaft 102.2 746 890 16.0 �1600 �2030 21.1
Prosp7020 R Distal Shaft 30.9 953 3675 74.0 �2228 �4668 52.2
Prosp7020 R Trochanter 12.4 1028 2500 59.0 �1699 �1784 4.7
Prosp5050 L Middle Shaft 1.7 1195 1194 0.0 �1616 �1616 0.0
Prosp1190 R Trochanter 14.9 1680 2462 32.0 �2586 �2969 12.9
Prosp7020 L Trochanter 18.8 975 973 0.0 �1582 �1582 0.0
ProspB10 R Neck Superior 8.1 3762 4476 16.0 �4270 �4690 8.9
ProspB10 R Trochanter 35.8 1675 2168 23.0 �3296 �3661 9.9
ProspD100 L Distal Shaft 15.3 561 886 37.0 �1074 �1292 16.8
Prosp7060 R Trochanter 2.7 1658 1853 11.0 �2768 �2779 0.3
ProspB10 L Proximal Shaft 0 1671 1671 0.0 �2652 �2652 0.0
ProspB10 L Middle Shaft 0 1422 1422 0.0 �1893 �1893 0.0
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Table 3 Comparison of Average Principal Strains, Tumor Volumes, and Dice Similarity Coeffi-
cients (DSC) in Tumor-Affected Femoral Regions between Manual Tumor Segmentation (MS) and
Automatic Tumor Segmentation by DL. Finite Element (FE) solutions at p � 6 were utilized for
the analysis.

Femur# Region DSC Tumor Vol.
Diff (cm3)

ϵ1 Diff ϵ1 (%) ϵ3 Diff ϵ3 (%)

DL MS DL MS

Prosp5010 R Trochanter 0.88 -0.1 1660 1643 �1 �2956 �2924 �1
Prosp7060 L Distal Shaft 0.87 11.1 679 649 �5 �2814 �2902 3
Prosp7060 L Proximal Shaft 0.87 13.7 1601 1643 3 �1460 �1210 �21
Prosp5060 L Middle Shaft 0.85 -0.9 1024 1088 6 �1993 �2053 3
Prosp5060 L Distal Shaft 0.85 -3.7 1023 1234 17 �2132 �2387 11
Prosp1120 R Middle Shaft 0.85 3.3 2066 1391 �49 �5065 �3705 �37
Prosp1140 R Trochanter 0.84 0.7 1788 1507 �19 �3279 �3615 9
Prosp1140 R Proximal Shaft 0.84 1.6 4852 3610 �34 �5462 �4851 �13
Prosp1140 R Neck Superior 0.84 0.6 4091 4667 12 �8807 �9078 3
Prosp1190 L Neck Superior 0.84 2.31 6615 6903 4 �6756 �6931 3
Prosp5050 R Trochanter 0.83 0.1 1796 1796 0 �2941 �2941 0
Prosp7020 R Middle Shaft 0.75 1.9 973 890 �9 �1717 �1784 4
Prosp7020 R Distal Shaft 0.75 3.2 3219 3675 12 �2131 �2030 �5
Prosp7020 R Trochanter 0.75 20.5 1033 2500 59 �4071 �4668 13
Prosp5050 L Middle Shaft 0.71 0.4 1195 1194 0 �1616 �1616 0
Prosp1190 R Trochanter 0.67 -2.3 2499 2462 �2 �3034 �2969 �2
Prosp7020 L Trochanter 0.65 -15.0 1038 973 �7 �1607 �1582 �2
ProspB10 R Neck Superior 0.62 -14.2 3801 4476 15 �5624 �4690 �20
ProspB10 R Trochanter 0.62 -20.8 2089 2168 4 �3557 �3661 3
ProspD100 L Distal Shaft 0.52 7.3 562 886 37 �1090 �1292 16
Prosp7060 R Trochanter 0.46 -0.8 1658 1853 11 �2768 �2779 0
ProspB10 L Proximal Shaft 0 -16.8 1319 1671 21 �1474 �2652 44
ProspB10 L Middle Shaft 0 -39.7 2116 1422 �49 �2177 �1893 �15
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