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Abstract

Background Metastatic femoral tumors may lead to pathological fractures during daily
activities. A CT-based finite element analysis of a patient’s femurs was shown to assist or-
thopedic surgeons in making informed decisions about the risk of fracture and the need for
a prophylactic fixation. Improving the accuracy of such analyses requires an automatic and
accurate segmentation of the tumors and their automatic inclusion in the finite element model.
We present herein a deep learning algorithm (nnU-Net) to automatically segment lytic tumors
within the femur.

Method: A dataset consisting of fifty CT scans of patients with manually annotated femoral
tumors was created. Forty of them, chosen randomly, were used for training the nnU-Net, while
the remaining ten CT scans were used for testing. The deep learning model’s performance
was compared to two experienced radiologists.

Findings: The proposed algorithm outperformed the current state-of-the-art solutions,
achieving dice similarity scores of 0.67 and 0.68 on the test data when compared to two
experienced radiologists, while the dice similarity score for inter-individual variability between
the radiologists was 0.73.

Interpretation: The automatic algorithm may segment lytic femoral tumors in CT scans
as accurately as experienced radiologists with similar dice similarity scores. The influence of
the realistic tumors inclusion in an autonomous finite element algorithm is presented in [14].

1 Introduction1

Approximately 30% to 50% of all cancer cases have the potential to spread and metastasize to2

the bones, resulting in metastatic bone disease (MBD) that compromises the structural integrity3

of the skeleton [5]. Such tumors may lead to pathological fractures caused by everyday activities or4

severe pain that requires medical intervention. Thanks to immuno-oncological and chemotherapy5

treatment advancements, patients diagnosed with MBD now have extended life expectancies. In6

the United States, there are an estimated 280,000 reported cases of long bone skeletal metastases7

annually, with the femur being particularly vulnerable to pathologic fractures due to its weight-8

bearing nature [16]. Prophylactic fixation is recommended to prevent impending femoral fractures9

as it presents lower risks and mortality rates compared to surgery performed after a traumatic frac-10

ture. The cost of prophylactic femoral fixation is approximately $78,000 per patient[9], $21,00011

less expensive than treatment following fracture occurrence. At the same time, unnecessary pro-12

phylactic surgeries should be avoided. Therefore, ensuring effective management of MBD requires13

accurate patient-specific assessments to evaluate fracture risk [19].14

Clinicians currently rely on the Mirels’ criterion [12] or their clinical experience to assess fracture15

risk in patients with MBD. However, the Mirels’ criterion lacks specificity [16], with a sensitivity16

of 91% and specificity of 35%, resulting in unnecessary internal fixation procedures for approx-17

imately two-thirds of patients [8]. In recent years, more accurate methods utilizing computed18

tomography (CT) have emerged to predict fracture risk, considering both the patient’s specific19

anatomical characteristics and the spatial distribution of material properties in metastatic bones.20

One notable tool is Simfini1, an autonomous finite element (AFE) software [21] , which provides or-21

thopedic oncologists with an assessment of fracture risk in patients with femoral metastatic tumors.22

Simfini employs Autonomous Finite Element Analysis (AFE) for a patient-specific evaluation of23

bone strength. The process involves automatic segmentation of femurs from CT scans using a24

U-net architecture, automatic generation of meshes, application of boundary conditions based on25

anatomical landmarks, high-order FE analysis with numerical error control and ultimately gener-26

1Simfini is a trademark of PerSimiO, Beer-Sheva, Israel
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ates an automatic report that delivers a clear assessment of bone fracture risk. An illustration of27

the Simfini workflow is illustrated in Figure 1.28

[Figure 1 about here.]29

While this approach has proven successful in predicting the risk of femoral fractures and as-30

sisting orthopedic oncology surgeons in determining the necessity of prophylactic fixation, it some-31

times encounters inaccuracies because the current algorithm does not identify and does not seg-32

ment the tumors. Since Simfini is fully-autonomous and because manual segmentation is both33

time-consuming and tedious, the exact location and dimensions of tumors within the femur are34

unknown and practically the tumors are assigned a reduced Young modulus because of the low35

intensity (Hounsfield Unit - HU) value. To address this limitation, a nnU-Net algorithm is beening36

implement, presented herein, to automatically identify and segment the tumors within the femur.37

Various methodologies have been developed to automate tumor segmentation in bones, and a38

comparison of existing approaches illustrates the need for continued improvement. Yildiz et. al [6]39

utilized a deep learning network, Mask2Former [1], for automatic segmentation and classification40

of tumors in the femur. Analyzing 84 femoral CT scans, they achieved an average Dice similarity41

coefficient (DSC) of 0.56� 0.08. It is hoped that by employing a deep learning (DL) architecture42

based on an U-net one may obtain a higher DSC.43

Claudio et. al [18], focusing on primary bone tumors, leveraged the Mask-RCNN-X101 archi-44

tecture [10] on a dataset of radiographs from 934 patients, attaining a DSC of 0.6� 0.34. Though45

this outcome surpasses the aforementioned work, it relies on X-ray images, identifies only a 2D46

tumor by a modality incompatible with our focus which is a 3D AFE analysis. Moreau et. al47

[13] implemented a U-Net-based architecture using the nnU-net framework [7] for bone and bone48

metastatic lesions segmentation in PET/CT scans of breast cancer patients. By incorporating a49

bone mask during training, they realized an increased segmentation accuracy, obtaining a DSC of50

0.61� 0.16. While their utilization of nnU-net architecture and inclusion of bone masks influenced51

our methodology, the low resolution of PET/CT modality and the because the segmentation is not52

concentrated on femurs, their outcome limit its applicability to our purposes.53

Our study leverages the former studies: we aim at implementing the nnU-Net framework, tai-54

lored specifically to segmenting lytic femoral tumors in CT scans. By focusing on this specific55

area and modality, we target a higher DSC. In addition, we also compare the tumor segmentation56

accuracy of the DL algorithm to the manual segmentation of two independent experienced mus-57

culoskeletal radiologists. This comparative approach, including an evaluation of inter-individual58

differences between radiologists segmentations, serves to establish a robust benchmark for evalu-59

ating the DL performance.60

We employ the U-Net [15] as it has emerged as a powerful tool for the accurate and effi-61

cient segmentation of medical images. The nnU-Net is an ensemble of the U-Net architecture62

with an automated pipeline comprising pre-processing, data augmentation and post-processing [7].63

Leveraging its capabilities, the nnU-Net can automatically configure a U-Net-based segmentation64

pipeline tailored to the provided training cases, thus the nnU-Net is used in our study. We inves-65

tigate its ability to determine an U-net architecture for the segmentation of femoral lytic tumors66
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utilizing a dataset of 50 CT scans of patients that were manually annotated for femoral lytic tu-67

mors. The nnU-Net performance is assessed based on DSC on randomly selected 10 CT scans68

annotated by two experienced radiologists.69

2 Methods70

CT scans of oncologic patients identified with femoral lytic tumors were collected at Tel-Aviv71

Sourasky Medical Center (TASMC) after receiving approval from the institutional review boards.72

It adheres to national and international guidelines, following the Helsinki committee approval73

number TLV-17-0532.74

2.1 Data Collection75

A dataset consisting of 50 anonymized CT scans of lower limbs from patients with various types76

of cancer was considered (overall 100 femurs). These patients exhibited lytic tumors in at least77

one of their femurs. Manual segmentation of lesion area in the entire dataset, was performed by a78

trained segmentation specialist from the Computational Mechanics and Experimental Biomechan-79

ics Lab at Tel-Aviv University. The manual segmentations were closely supervised by the head of80

the Orthopedic Oncology Department at TASMC after training by an experienced musculoskeletal81

radiologists from TASMC. In addition, for the test data, manual segmentation was also performed82

by two independent experienced musculoskeletal radiologists (Radiologist 1 and 2). The objective83

of the annotations was to identify the regions containing lytic tumors within the femur. This in-84

volved a careful examination of each 2D DICOM slice of the entire CT scan. When a lytic tumor85

was visually apparent (manifesting as a darker and distorted area within the bone tissue), the86

corresponding 2D image was annotated by segmenting and masking the tumor region using the87

ITK-SNAP software [22]. Figure 2 provides an illustrative example of annotating a lytic tumor88

within the femur using ITK-SNAP.89

The dataset was divided randomly in two: 80% for training and validation, and 20% for testing.90

The training and validation datasets were further subdivided into a stratified 5-fold cross-validation91

setup. In this setup, each fold consisted of 80% of the cases for training the algorithm, while the92

remaining 20% were set aside for validation. The utilization of stratified cross-validation ensured93

that the entire dataset was adequately represented in the evaluation process while maintaining a94

consistent proportion of different classes within each fold. This approach was chosen due to the95

relatively small size of the dataset and its imbalanced nature.96

[Figure 2 about here.]97

2.2 Pre-Processing98

As a pre-processing step, the two femurs were segmented from the CT scan separately, resulting99

in two new CT scans, each containing only the voxels corresponding to one femur. Based on a100
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preliminary study, training a deep learning model to segment lytic tumors in a femur alone yields101

significantly better results, excluding any irrelevant tissues from the CT scan.102

The femur segmentation was based on Yosibash et. al [20], which employs a U-net architecture103

specifically designed to segment the femur from an abdominal CT scan. This method demonstrated104

outstanding performance with a DSC of 99.24%. Two masks for the two femurs in the CT scan were105

generated representing each patient’s femur. In addition, two additional text files were generated106

for each femur containing a list of voxels coordinates and their corresponding Hounsfield units.107

Each of the two femurs masks was converted to a NIFTI format CT scan to adhere to the specific108

dataset requirements of the nnU-Net. The NIFTI files, along with their corresponding manually109

segmented tumors (also in NIFTI format) consisted the datasets for the nnU-net pipeline. Figure110

3 provides a visual representation of the pre-processing procedure.111

The nnU-Net framework applies additional pre-processing steps. These involve intensity nor-112

malization, where the femur voxels in each image are transformed through a process known as113

Z-score normalization. This normalization entails subtracting the mean and dividing by the stan-114

dard deviation of the femur voxels. Meanwhile, the non-femur voxels remain unchanged at 0.115

Furthermore, all samples are cropped to the region encompassing non-zero values, effectively re-116

ducing their size and alleviating computational demands. Additionally, the samples are re-sampled117

to match the median voxel spacing of their respective dataset.118

[Figure 3 about here.]119

2.3 Network Architecture120

The network architecture generated by nnU-Net is illustrated in Figure 4. It follows a similar121

pattern as the 3D U-Net [3], comprising an encoder and a decoder interconnected through skip122

connections. nnU-Net relies on standard convolutions for feature extraction, without incorporating123

additional architectural modifications. Downsampling is achieved using strided convolutions, while124

upsampling is performed using convolution transpose operations. The input patch size is set to125

384�64�96, with a batch size of 2, allowing the network to process multiple patches simultaneously.126

The network undergoes a total of five downsampling operations, progressively reducing the spatial127

dimensions of the feature maps and ultimately resulting in a bottleneck feature map size of 12�4�6.128

The initial number of convolutional kernels is set to 32, doubling with each downsampling step129

until reaching a maximum of 320 kernels. The number of kernels in the decoder mirrors that of the130

encoder, ensuring symmetry in the network structure. Non-linear activation functions are applied131

using leaky ReLUs [11], introducing a small negative slope for negative input values to enhance132

learning capability. To normalize the feature maps and stabilize the learning process, instance133

normalization [17] is employed.134

[Figure 4 about here.]135

2.4 Training Details136

The 3D U-net architecture, generated by the nnU-net framework, was trained in a five-fold137

cross-validation on the Tel-Aviv University servers with Docker virtualization services. It utilized138

5



an NVIDIA RTX A5000 GPU with 24GB memory, allowing for a large patch size. The dataset139

had a median image shape of 386 � 75 � 108, and the initial patch size was set to 384 � 64 � 96140

while maintaining a batch size of 2. The nnU-net was trained for 1000 epochs, with each epoch141

consisting of 250 mini-batches. Stochastic gradient descent with Nesterov momentum (µ � 0.99)142

[2] and an initial learning rate of 0.01 were used for weight learning. The learning rate followed a143

’poly’ learning rate policy with a decay factor of 0.9. The loss function combined cross-entropy and144

Dice loss [4] . Extensive data augmentation techniques, including elastic deformations, random145

scaling, random rotations, and Gamma augmentation, were employed to address the limited size146

of the database. The input data for the model consisted of femur masks extracted from the CT147

scan and converted to NIFTI format.148

2.5 Inter-individual Difference Evaluation149

To evaluate the variability and quality of manual segmentations, two expert musculoskeletal150

radiologists from the TASMC segmented separately lytic tumors in the ten CT scans from the test151

set. The segmented tumors area was compared between the segmentation specialist, Radiologists152

1 and 2, and the DL automatic segmentation.153

2.6 Evaluation Metric: Dice Similarity Coefficient (DSC)154

Segmentation performance is commonly assessed by the Dice Similarity Coefficient (DSC),155

also known as the Dice score. The DSC quantifies the overlap between the tumor segmentation156

predicted by a model and the ground truth segmentation, with a higher DSC indicative of greater157

accuracy and precision in tumor segmentation:158

DSC �
2� TP

2� TP � FP � FN
(1)

here, ”TP” stands for true positives (tumor pixels correctly identified by the model), ”FP” stands159

for false positives (non-tumor pixels that the model incorrectly labels as tumor), and ”FN” stands160

for false negatives (tumor pixels that the model fails to detect). The DSC ranges from 0 to 1,161

with a score of 1 indicating perfect overlap between the predicted tumor segmentation and ground162

truth.163

An important special case is when there are no tumors in the femur. This situation results in164

the DSC becoming undefined, often represented as a ”NaN” (not a number) due to division by165

zero. A NaN DSC should not be considered a perfect score (DSC=1), nor should it be completely166

disregarded. This case is a ”true negative” case, indicating a correct non-detection by the DL,167

which essentially means no segmentation task was required. For the average DSCs we exclude the168

cases resulting in NaN DSC.169

Tumors segmentation similarity (DSC) was compared between the manual segmentation’s of170

the specialist and Radiologists 1+2 (inter-individual difference), and between each manual seg-171

mentation and DL automatic segmentation.172
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3 Results173

The details of the fifty CT scans, including the entire femurs, obtained from the TASMC are174

provided in Appendix A. All patients were diagnosed with different types of cancer and exhibited175

lytic tumors in at least one of their femurs. The patient population comprises 21 males and 29176

females, spanning an age range from 26 to 84, with a median age of 64. In terms of data acquisition,177

all but two of the CT scans were acquired using a peak kilovoltage (kVp) of 120, with the remaining178

two scans being acquired at a kVp of 140. The milliampere-seconds (mAs) values for these scans179

range from 33 to 484. Most CT scans were acquired by Philips scanners except for three scans180

that were obtained by a GE scanner. The scans exhibited an average spacing of 0.85mm, with181

slice thickness varying from 0.9 to 3 mm. For training and testing, each femur was processed by182

the DL model (overall 100 femurs). Each femur contained an average of 377 axial slices for the183

right femur and 369 slices for the left femur. The regions of interest, identified as lytic tumors,184

represented approximately 19,057 voxels in each bone. The entire dataset was randomly divided185

into 80 femurs for training (40 patients) and 20 femurs (10 patients) for testing.186

3.1 Inter-individual Difference187

Inter-individual differences were evaluate based on the 20 femurs (10 CT scans), and included:188

differences between radiologists 1 and 2, and differences between the two radiologists and the189

specialist. These comparisons served to evaluate the labeling variability and training data quality,190

and to establish the ground-truth to assess the DL performance. In Table 1 we present the DSC191

for the 20 femurs (10 CT scans) of the two expert radiologists. The average DSC is 0.73 with192

a standard deviation of 0.08. The DSC of the specialist segmentations compared to experienced193

radiologists’ segmentations is summarized in Table 2. The DSC between the specialist’s and the194

radiologists’ segmentations are 0.72 and 0.70. It is important to note that two entries in Table195

2 are excluded. In these cases cysts are present which should be segmented for the subsequent196

AFE analyses addressed in Part II of this paper. However, these should not be identified as lytic197

tumors. We discuss these cases in the discussion section.198

[Table 1 about here.]199

[Table 2 about here.]200

3.2 The Influence of the Number of Femurs in the Training Set on nn-201

U-Net’s Performance202

To investigate the impact of the training dataset size on the nn-U-Net accuracy we incrementally203

expanded the number of femurs included in the training set (24, 64 and 80 femurs). The training204

used a 5-fold cross-validation strategy, allowing to assess the model’s performance in a robust205

manner.206

In Table 3 we summarise the DSC obtained by 5-fold validation when using 24, 64 and 80 femurs.207

As expected when increasing the dataset from 24 to 64 femurs the DSC improves, but not so from208

64 to 80 femurs. This may be attributed to the introduction of more diverse and complex cases in209
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the expanded training set. Given the substantial variability in tumor characteristics, such as size,210

shape, and contrast, even a more comprehensive training dataset does not guarantee uniformly211

improved model performance. Our observations also reinforce the value of using cross-validation212

for robust performance evaluation, particularly in scenarios of a dataset for which complexity and213

variability are high.214

[Table 3 about here.]215

We use in the sequel the U-net trained on the 80 femurs dataset. This U-net has been exposed to216

additional diversity during training thus may be more robust to a wider range of complex tumor.217

3.3 nnU-Net Performance218

The performance of the trained nnU-net architecture was evaluated by comparison to the219

manual segmentation of lytic tumors performed by the segmentation specialist and the two expert220

radiologists based on the 20 femurs from the test group. The results are summarised in Table 4.221

[Table 4 about here.]222

An average DSC of 0.69 and a standard deviation of 0.23 was obtained when comparing the223

automatic DL segmentation to the segmentation specialist. It ranged from 0.00 (for ProspB10 left224

femur) to 0.88 (in Prosp5010 right femur). Of particular interest are the ’NaN’ cases (Prosp1120,225

Prosp1140, Prosp5010), which suggested that neither the DL model nor the segmentation specialist226

identified tumors in these samples, a perfect scenario of true negatives.227

Similar patterns were obtained when comparing the automatic segmentation to the radiologists:228

the average DSCs were 0.67 and 0.68. The DSC ranged between 0.15 (in ProspB10) to 0.87 (in229

Prosp1120) for radiologist 1, whereas for radiologist 2 it ranged from 0.16 (in ProspB10) to 0.86 (in230

Prosp7020). Similar perfect true negatives were observed (’NaN’ cases). However, cases involving231

cysts were deliberately ignored by the radiologists and thus were excluded from this evaluation.232

The left femur of ProspB10 consistently showed a low DSC in all tests due to a subtle, low-233

contrast tumor near its distal shaft, as identified by the radiologists (our adopted ground truth).234

The DL model’s segmentation erroneously highlighted a substantial portion of the bone marrow as235

a tumor, likely influenced by its distinct brightness and low contrast in this case. Furthermore, the236

segmentation specialist’s attempt to segment this region was unsuccessful, resulting in a DSC of 0237

when compared to the radiologists, as reflected in Table 2. This underscores the challenging nature238

of certain cases in our model. Figure 5 depicts the tumor in ProspB10’s left femur as outlined by239

the first radiologist, with the second radiologist arriving at a similar segmentation.240

[Figure 5 about here.]241

The DL model shows a similar DSC when compared to the specialist (average DSC of 0.69)242

and when compared to the radiologists (average DSCs of 0.67 and 0.68). The similarity in the243

DSC standard deviation indicates also a consistent level of variability. This DSC is very close244

to the inter-individual average DSC of 0.73. However, a larger standard deviation is observed in245
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DL-to-radiologist comparisons (0.23 compared to 0.08) indicating cases, such as ProspB10’s left246

femur, where the DL model’s performance falls short.247

4 Discussion248

The nnU-Net framework was utilized to generate a U-net architecture for lytic femoral tumor249

segmentation showing good agreement with human expert annotations. The DL performance250

marginally trailed the inter-individual agreement between two expert radiologists.251

The annotations for the nnU-Net training were performed by the segmentation specialist.252

An inter-individual difference between the specialist and two experienced radiologists (DSC of253

0.72,0.70) was comparable to the inter-individual difference between the expert radiologists them-254

selves (0.73) when excluding the two cyst cases from the 20 test femurs. These isolated lesions255

located at the femur’s head, shown in Figure 6, are essential to the finite element analysis and256

their segmentation is important.257

Comparing the DSC scores achieved by the DL model with those from the segmentation spe-258

cialist and the two radiologists, we found a generally consistent level of agreement across cases.259

Nevertheless, in some cases the DSC comparison shows some variability resulting from the intrin-260

sic heterogeneity of lytic tumors, in terms of their size, shape, density, and location within the261

femur. While radiologists rely on years of experience and clinical knowledge, the nnU-net relies on262

learned patterns from the training data, which may not always capture the nuanced judgment of263

human experts and can lead to subtle differences in the delineation of tumor boundaries. These264

differences are particularly pronounced in challenging cases, such as the subtle, low-contrast tumor265

in ProspB10’s left femur. The presence of several ’NaN’ scores in Table 4 indicates true negative266

scenarios where the absence of tumor detection by the DL model was in complete agreement with267

the human annotators.268

[Figure 6 about here.]269

The marginal decrease in mean DSC and a slight increase in variability for the training set of270

80 femurs compared to the 64 femurs suggest that increasing the training dataset may not always271

guarantee enhanced performance. This, coupled with the inter-individual difference between expert272

radiologists, suggests that femoral tumor segmentation may not achieve a high DSC.273

The automatic segmentation of femoral lytic tumors, which usually requires an experienced274

radiologist’s insight, was shown to perform as well on average. To the best of our knowledge,275

the method proposed in this paper is the state-of-the-art in segmenting lytic femoral tumors in276

CT scans. The automatic DL model is integrated into an autonomous finite element pipeline,277

described in a follow-on paper, aimed at determining the risk of pathological femoral fractures and278

thus assisting orthopedic oncologists in their decision on the need of a prophylactic surgery.279

4.1 Limitations280

Several limitations in this study could be further investigated in a follow-up research:281
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� The training set consists of 80 femurs. Enlarging the training data set and the variety of CT282

scanner manufacturers may increase the accuracy of the DL model.283

� Only two experienced radiologists annotated the test set and only 20 femurs were considered284

for the estimation of the inter-individual difference. Furthermore, the radiologists employed285

the ITK-SNAP software for their segmentation, which is not their routine segmentation tool286

in daily practice. A larger cohort of radiologists and a larger testing dataset is warranted.287

� The correlation of the Dice score with the size of the tumor must be further investigated.288

Small tumors are challenging for automatic segmentation, so their detection becomes difficult289

for DL models. Therefore undetected small tumors can significantly reduce the DSC. Hence,290

the Dice score, despite its frequent usage, may not be a good measure of segmentation291

performance.292
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Figure 1 Simfini AFE pipeline, taken from [16]
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Figure 2 Segmentation of a lytic tumor within the femur viewed from multiple angles performed
with ITK-SNAP software.
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Figure 3 Segmented femur in NIFTI format viewed by ITK-SNAP. a. The original CT scan
with the femur highlighted in blue, b. list of femur voxels coordinates saved in a text file, c. the
segmented femur.
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Figure 4 nnU-Net architecture for the training set. It follows a 3D U-Net pattern with an
encoder, decoder, and skip connections. The input patch size is 384 � 64 � 96, and the network
includes five downsampling operations.
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Figure 5 Abdominal CT scan of patient ProspB10. Highlighted in the left femur (viewed from
the right) is a barely discernible tumor, encircled by the red polygon for clarity.
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Figure 6 Cyst segmentation by the specialist and two expert radiologists in the two excluded
test cases - Prosp5050 (right femur) and Prosp7060 (right femur).
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Radiologist 1 vs Radiologist 2

#Case Left Femur Right Femur

Prosp1120 NaN 0.83
Prosp1140 NaN 0.64
Prosp1190 0.79 0.77
Prosp5010 NaN 0.68
Prosp5050 0.65 NaN
Prosp5060 0.80 NaN
Prosp7020 0.80 0.76
Prosp7060 0.77 NaN
ProspB10 0.70 0.70
ProspD100 NaN 0.55

Average DSC: 0.73
Standard Deviation: 0.08

Table 1 Comparison of lytic tumors segmentation similarity (DSC) between Radiologist 1 and
Radiologist 2.
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Specialist vs Radiologist 1

#Case Left Femur Right Femur

Prosp1120 NaN 0.87
Prosp1140 NaN 0.76
Prosp1190 0.83 0.80
Prosp5010 NaN 0.73
Prosp5050 0.53 excluded
Prosp5060 0.81 NaN
Prosp7020 0.80 0.80
Prosp7060 0.83 excluded
ProspB10 0.00 0.85
ProspD100 NaN 0.77

Average Dice Score: 0.72
Standard Deviation: 0.23

Specialist vs Radiologist 2

#Case Left Femur Right Femur

Prosp1120 NaN 0.80
Prosp1140 NaN 0.65
Prosp1190 0.86 0.79
Prosp5010 NaN 0.67
Prosp5050 0.72 excluded
Prosp5060 0.86 NaN
Prosp7020 0.83 0.86
Prosp7060 0.84 excluded
ProspB10 0.00 0.77
ProspD100 NaN 0.51

Average Dice Score: 0.70
Standard Deviation: 0.23

Table 2 Comparison of lytic tumors segmentation similarity (DSC) between the specialist and
Radiologists 1 and 2 segmentations. Boldface numbers denote femurs with a cyst. The DSCs
between the two experienced radiologists are similar to those obtained by the specialist.
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Fold Number 24 Femurs 64 Femurs 80 Femurs

0 0.44 0.53 0.63
1 0.55 0.69 0.45
2 0.73 0.69 0.56
3 0.39 0.66 0.68
4 0.54 0.63 0.73

Mean 0.53 0.64 0.61
Std Dev 0.13 0.07 0.10

Table 3 Training DSC from a 5-fold cross-validation by the nn-Unet. Each column represents
a different training set size. The ’Mean’ and ’Std Dev’ are the average and standard deviation of
the DSC across the five folds.
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Automatic vs Specialist

#Case LF RF

Prosp1120 NaN 0.85
Prosp1140 NaN 0.84
Prosp1190 0.84 0.67
Prosp5010 NaN 0.88
Prosp5050 0.71 0.83
Prosp5060 0.85 NaN
Prosp7020 0.65 0.75
Prosp7060 0.87 0.46
ProspB10 0.00 0.62
ProspD100 NaN 0.52

Average Dice Score: 0.69
Standard Deviation: 0.23

Automatic vs Radiologist 1

#Case LF RF

Prosp1120 NaN 0.87
Prosp1140 NaN 0.76
Prosp1190 0.77 0.80
Prosp5010 NaN 0.73
Prosp5050 0.59 excluded
Prosp5060 0.78 NaN
Prosp7020 0.55 0.80
Prosp7060 0.85 excluded
ProspB10 0.15 0.80
ProspD100 NaN 0.22

Average Dice Score: 0.67
Standard Deviation: 0.20

Automatic vs Radiologist 2

#Case LF RF

Prosp1120 NaN 0.80
Prosp1140 NaN 0.65
Prosp1190 0.81 0.79
Prosp5010 NaN 0.67
Prosp5050 0.72 excluded
Prosp5060 0.79 NaN
Prosp7020 0.60 0.86
Prosp7060 0.78 excluded
ProspB10 0.16 0.77
ProspD100 NaN 0.39

Average Dice Score: 0.68
Standard Deviation: 0.20

Table 4 DSC Comparison for the segmentation of lytic femoral tumors: Automatic vs Specialist
and Radiologists 1 and 2.
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