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Efficient, accurate and reliable segmentation of femurs from CT-scans is of major importance for patient-

specific autonomous finite element analysis (AFE) to determine bone’s stiffness and strength. We present a fully 
automated segmentation algorithm for whole and partial femurs with or without tumors, and clinical applications 
of the AFE [1] in clinical practice.

The segmentation is based on an U-Net convolutional neural network, resulting a 3D mask representing the 
desired femur in a CT scan. It is robust, independent of the scanning parameters such as slice spacing, pixel 
size, scanner manufacturer or the femoral length available in the scan. The U-Net was trained on 178 manually 
segmented femurs (23,721 images) and tested on 43. The performance evaluation resulted in a Dice similarity 
score (DSC) of 0.9924, intersection over union (IoU) of 0.9849, Hausdorff distance of 4.3315 mm and symmetric 
average surface distance (ASD) of 0.1326 mm. The algorithm is competitive with the best state-of-the-art femoral 
segmentation methodologies available.

Based on the segmentation an automatic p-FE mesh is generated and physiological boundary conditions 
representing sidewise falls or stance are being applied automatically to improve the performance of the AFE 
described in [1]. New examples of the usage of the AFE in endocrinology and orthopedic oncology demonstrate 
this disruptive technology in actual clinical practice. We present the use of AFE for predicting hip fracture risk in 
the elderly population due to a sidewise fall and the identification of patients who require a prophylactic surgery 
due to metastatic tumors in their femurs.
1. Introduction

Patient specific finite element (FE) analyses were proven to be a 
powerful non-invasive tool for predicting the mechanical response of 
human femurs [2–11]. In a FE analysis physiological loads are virtually 
applied on the model and the mechanical response is computed allow-

ing an assessment of femoral strength and fracture risk. Such patient 
specific information is valuable in granting suitable clinical treatment 
to elderly and diabetic patients [12,13] and patients with femoral tu-

mors [11,14–16]. An accurate and automated segmentation algorithm 
is a prerequisite for such FE analyses, i.e. automatic acquisition of geo-

metrical representation of the femur and inhomogeneous material prop-

erties from CT scans. Past femoral segmentation was mostly performed 
semi-automatically, demanding substantial manual intervention. This 
includes manual detection of the relevant CT slices, followed by global 
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thresholding and manual boundary corrections. Such procedures are 
highly inefficient, user dependent and prone to human error. A fully 
automatic and efficient segmentation algorithm is therefore required to 
allow the application of autonomous FE simulations in clinical practice 
on a large scale [1].

Segmentation by global thresholding alone is insufficient for two 
main reasons. First, bone density varies significantly along the femur, 
and secondly, thresholding causes the femur and pelvis to appear con-

nected. Many previous studies focused on separating the hip joint into 
its components using different techniques. Classical image processing 
algorithms based on image filtering and analysis aimed mainly at iden-

tifying the gap between the femoral head and pelvis were suggested 
by Zoroofi et al. [17] and Cheng et al. [18]. Gangwar et al. [19]

introduced the use of phase field models, borrowed from fracture me-

chanics, to tackle the separation problem. Patch based algorithm was 
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proposed by Chang et al. [20] aiming to classify the joint gap pixels 
into femoral and pelvic. Other common approaches for femoral segmen-

tation were multi atlas (MA) algorithms [21–23] and statistical shape 
models (SSMs) [21,23–25]. MA algorithms are based on registration of 
pre labeled set of images on top of the segmented image [26]. SSM al-

gorithms are based on fitting a statistically derived shape model on to 
the segmented image [27]. The methods described above achieved good 
results reporting Dice similarity coefficient (DSC) [28] in the range of 
0.9036-0.976. Despite the high DSC scores which quantifies the volume 
overlap between the predicted mask and the ground truth, disagreement 
could commonly be found on bone’s boundaries. These disagreements 
are particularly important for FE analyses since they contain the bone 
cortex which highly influences the mechanical behavior.

In recent years, the use of convolutional neural networks (CNNs) 
gained popularity in femur segmentation [1,29]. In particular the use of 
V-Net [30] architecture, which is a 3D extension of the U-Net [31]. The 
new trend perfected the segmentation further, driving the DSC above 
0.9800. The use of V-Net for femoral segmentation was first suggested 
in [32] where a small cohort of only 20 femurs was used. In a recent 
study [33], a large cohort of 397 femurs was used, resulting in an im-

pressive DSC score of 0.9815. The methods were improved even further 
in [34] by applying an additional spatial transformation onto the V-Net 
output (ST-V-Net) and reaching a DSC score of 0.9888. A main limita-

tion of the V-Net models is that they were designed only for CT scans 
with a defined resolution and proportion (slice spacing of 3 mm and 
pixel size of 0.8 mm in [33,34]). CT scans with different resolution had 
to be resampled, thus commonly losing important information due to 
the large slice spacing. Additionally, the input size of the network was 
set to 32 slices, limiting the network’s efficient application only to a 
short portion of the femur i.e. mainly to its proximal part.

A more flexible and accurate segmentation approach may be 
achieved by U-Net models. For example a 3-D U-net was considered 
in [35], trained on 60 CT scans (120 proximal femurs) and evaluated 
on 1147 (2294 proximal femurs), a remarkable number of CTs for the 
test-cohort. The CTs in [35] were for the proximal femur only, all from 
same Phillips CT scanners with same resolution 512 × 512, voxels of a 
size of 0.98 × 0.98 × 1 𝑚𝑚3 and the number of slices ranges from 88 to 
178. An excellent DSC score of 0.99 was obtained. The 3D segmenta-

tion is achieved by stacking the 2D output masks on top of each other 
thus enabling efficient segmentation of femurs independently of their 
length or CT slice spacing.

Femur segmentation from MRI scans, was performed by both 2D U-

Net models and 3D V-Net models, and compared in [36] (where they 
were referred as to 2D convolutional neural network (CNN) and 3D CNN 
respectively). It was concluded that: “The best performing 2D CNN with 
post-processing exceeds the precision and DSC of the best performing 3D 
CNN”, thus suggesting the possibility that U-Net based segmentation 
algorithms can outperform their 3D extension (V-Net). The flexibility 
benefits of 2D U-net models encourage to explore this possibility, and 
to extend the scope also to femurs with tumors. Furthermore, to the best 
of our knowledge past segmentation algorithms did not account for the 
automatic determination of slice range within a CT in which the femur 
is located - the relevant slices were extracted manually from patient’s 
CT scan prior to segmentation. Nor the former algorithms determined 
anatomical points so to allow the application of forces and boundary 
conditions in a systematic manner.

Herein we present a fully automated, accurate and efficient segmen-

tation algorithm for intact femurs and for femurs with tumors, be it if 
the entire femur is present in a CT scan or only a part of it. Since it is 
intended for an autonomous system, the algorithm first identifies the 
CT slices in which a femur is present and thereafter performs the seg-

mentation, independently of the scanning parameters such as slice spacing, 
pixel size, scanner manufacturer and the femoral length available in the CT 
scan. The anatomical points are determined thereafter by an algorithm 
detailed in [1].
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The segmentation algorithm is incorporated into the autonomous FE 
(AFE) algorithm presented in [1]. We highlight the AFE usage in clinical 
practice to determine the risk of hip fracture due to metastatic tumors, 
assisting orthopedic oncologists to determine the need for a prophylac-

tic surgery. Another clinical application of the AFE is the opportunistic 
determination within the elderly population of the ones at high risk of 
hip fracture due to a sidewise fall. Clinical examples are presented.

2. The segmentation

The segmentation begins by retrieving the raw CT scan from a PACS 
database and ends by creating a 3D binary mask which indicates the 
precise location of the two femurs (left or right) in the scan. It may be 
applied to CT scans which contain the entire body of the patient where 
a full length femur is found as well as for CT scans which include only 
part of the body such as an abdominal CT scan containing only the 
proximal part of the femur. The segmentation pipeline consists of the 
following steps: (a) CT data loading and preprocessing. (b) Identifica-

tion of the most distal femoral slice from which segmentation should 
start. (c) Segmenting each of the femoral slices from the bottom up un-

til the pelvis is reached. (d) Stacking the 2D masks on top of each other 
to obtain one 3D mask representing the femur.

2.1. U-net design and architecture

A variation of the U-Net original architecture, firstly proposed by 
[31] is used as illustrated in Fig. 1. The main differences are (a) zero 
padding is used before convolution so the output image has the same 
dimensions as the input. (b) Batch normalization is performed follow-

ing convolution operations [37]. The obtained network resulted in over 
31 million trainable parameters. Basic terminology and principles are 
available in [38] and [39].

The U-Net contraction path is made of convolution blocks which are 
followed by max pooling. Each block is defined by 3x3 convolution fil-

ter applied to obtain 64/128/256/512/1024 channels (feature maps). 
Next, batch normalization and ReLU activation are applied. The convo-

lution block is performed twice before 2x2 max pooling follows, thereby 
contracting the spatial dimension by half. The expansion path resembles 
a mirrored contraction path. The max pooling is replaced by transposed 
convolution (2x2, stride 2) which restores the spatial dimensions. The 
resulting outputs are concatenated with a copy of their corresponding 
pairs from the contraction path, thus forming skip connections (see 
[40]). Data from the contraction path contains higher resolution in-

formation, thus enabling its restoration via the convolution blocks that 
follow. The expansion path ends when the original input image dimen-

sions are restored. A final 1x1 convolution with sigmoid activation is 
performed to obtain a 2D one channel probability map in which the 
values indicate pixels’ probability of belonging to the femur. A thresh-

old of 0.5 is thereafter used (during postprocessing) so to transform the 
output into a binary mask image.

2.1.1. Dataset

Manual masks of individual femoral CT slices were used as the 
ground truth for training and testing. CT scans from 98 subjects (40 
male, 58 female) of age 15 to 94 years old (mean: 64 sd: 17). A total 
of 128 clinical CT scans (in supine position) were used. These resulted 
in 221 manually segmented femurs. Note that some patients had only 
one femur manually segmented and some patients were scanned more 
than once. The statistical analysis addresses individual femurs (n=221, 
87 male, 134 female) and not patients or CT scans. The CT scans were 
acquired at various medical centers, different CT scanners from four 
different manufacturers (Philips: n=168, Siemens: n=30, GE: n=17, 
Toshiba: n=6), with a scanning resolution varying among the scans. 
Slice spacing varied between 0.5 to 3.0 mm with a mean and standard 
deviation of 1.27±0.41 mm. Pixel size varied between 0.51 to 1.18 mm 
with a mean and standard deviation of 0.9±0.11 mm. The data included 
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Fig. 1. U-Net architecture.
55 femurs with metastatic tumors of various types and stages. Such 
tumors commonly distorted the femoral intact geometry. Some of the 
scans included the entire femur whereas others included only the prox-

imal part up to about 20 mm below the lesser trochanter. Since current 
FE analyses address the femoral proximal region and shaft, manual seg-

mentation masks of the knee region were rare. All manually segmented 
femurs did include the proximal part which is most challenging for seg-

mentation.

A testing set of 20% (n=43) of the femurs was randomly selected. 
The rest of the data was kept for training. None of the patients from the 
testing set were included in the training set.

2.1.2. CT image preprocessing

The algorithm is designed so that each femur (left or right) is seg-

mented separately and independently of its collateral. It is assumed 
that the side of the femur being segmented is known in advance. Be-

fore training/testing, the data was preprocessed: First 256x256 images 
were extracted around the center of mass of each femur at each CT 
slice. Since the side of the segmented femur is known, the U-Net was 
trained only on left femurs. Images obtained from the right femur were 
flipped. This provides two main advantages, first the image variation is 
reduced, second the amount of training data is doubled thus narrowing 
and focusing the network’s task. To assure no high density objects (as 
metallic implants, keys, coins wires, etc) or artifacts are present, image 
CT number values above 3050 were replaced by 0. Pixels were nor-

malized through division by the maximal value in each image (such a 
normalization with image values between 0 and 1 is a common prac-

tice proven to enhance performance). Ground truth masks had binary 
values (of either 1 or 0).

2.1.3. Training

Image selection

Each femur may be composed of hundreds of 2D images. Most of 
these are shaft images which usually are very similar. To impose an 
equal consideration to the proximal femur and to the femoral shaft (i.e. 
to balance the data), the number of shaft slices were reduced. Pelvic 
images with corresponding empty masks were also included in the train-

ing. These images are useful as indicators that segmentation has reached 
the pelvis and should be stopped. Knee images were also added when 
available. The classification of the images and their inclusion rate in 
training is summarized in Table 1. The different image types are illus-

trated in Fig. 2. A total number of 23,721 training images were used.

Training algorithm

The model was trained for 200 epochs using Dice loss function (see 
e.g. [41]). The Dice similarity coefficient (DSC) [28] is defined as the 
intersection of the masks (manual and predicted) multiplied by 2 and 
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divided by the sum of elements in each mask. It varies between 0 and 1 
with the latter indicating a perfect agreement. To define a loss function 
based on the Dice coefficient (Dice loss), two adjustments were made. 
First, since during training the minimum of the loss function is sought, 
the Dice coefficient must be multiplied by -1. Second, 1 should be added 
to the numerator and denominator. This is done to enable the predic-

tion of an empty mask if for example a pelvic image is considered. In 
such case the Dice coefficient would be 1 indicating perfect agreement 
(division by 0 is also prevented). Dice loss is defined by:

𝐷𝑖𝑐𝑒 𝑙𝑜𝑠𝑠 = − 2|𝑃 ∩𝑀|+ 1
|𝑃 |+ |𝑀|+ 1

(1)

Where P and M are the predicted and the manual mask images. 
Adam optimizer was used to seek the minima of the loss function ([42]). 
Learning rate was set to 10−4 and a batch size of 20 was used. The train-

ing data was randomly split into a training set (70%) and a validation 
set (30%). At each epoch, the model was evaluated on both sets. This 
was performed to monitor over-fitting. The model with the lowest loss 
on the validation set (validation loss) was kept as the best model.

To avoid over-fitting, data augmentation was performed. Before ex-

posing the network to an image, the image was randomly transformed. 
Thus, assuring that the network is not exposed to the same exact image 
more than once. Image augmentation increases the robustness of the 
model and improves its generalization. The following transformation 
parameters and their corresponding bounds were used: rotation range: 
±90𝑜, vertical and horizontal shift range: ±30%, shear range: ±10%, 
zoom range: ±50%. The high zoom range is particularly important since 
it enables the model to generalize for CT scans of different resolutions. 
During training, the model converged to validation loss of = -0.98927 
(obtained after 175 epochs).

Testing

The model was tested on 20% of the manually segmented femurs 
(n = 43, 18 male, 25 female, 19 with tumor). Unlike the training pro-

cess where each image was addressed as a separate case, at the testing 
stage the performance is evaluated for the entire 3D femur (composed 
of multiple 2D images). Here, all available manually segmented images 
were used (14,334 images and corresponding masks). The U-net output 
is a probability map with values between 0 and 1. In practice, values 
very rarely significantly varied from either 0 or 1. Still, a threshold of 
0.5 was used to transform the output into a binary mask image. Fol-

lowing the sequential analysis of individual images, they were stacked 
on top of each other to construct a continuous 3D volume representing 
the segmented femur. Only the largest 3D component was kept, any de-

tached outlier pixels were excluded. No additional post processing was 
performed.
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Table 1

Training images definition and selection.

Image 
classification

Definition Slices included Training 
images 
(23,721)

Proximal 70 mm below top slice. All 10,662

Shaft All excluding proximal. Images were skipped so that shaft image number 
is similar to proximal femur image number.

8,526

Knee The five distal slices only if the 
femur is longer than 330 mm.

All except those that were already considered as 
shaft slices.

632

Pelvis The 30 mm above the femur. All 3,901

Fig. 2. Images from different areas of the CT scan together with the corresponding ground truth mask, defined by manual segmentation.
Segmentation performance evaluation metrics

Performance quantification is based on evaluation metrics as de-

fined in [43] and [44]: (a) DSC also known as F1 score, (b) intersection 
over union (IoU), also known as the Jaccard index, (c) sensitivity, (d) 
specificity, (e) symmetric Hausdorff distance (HD), (f) symmetric and 
absolute average surface distance (ASD) also known as average sym-

metric surface distance (ASSD).

The aforementioned metrics vary from slice to slice along the femur 
and therefore depend on the evaluated volume. Generally, if one con-

siders the femoral proximal regions such as the head and trochanters, 
the described measures would be inferior compared to the shaft. Thus, 
the larger the portion of the evaluated femur, the better the metrics 
become. Here, measures are reported for four different bone volumes 
defined by the femoral length measured from the most proximal femoral 
point: 50 mm - including mostly the head, 100 mm - from the top of the 
head until below the lesser trochanter, 150 mm also includes part of the 
shaft, and “All” including all the femoral length available (see Fig. 4). 
The metrics were computed based on the 43 femurs (the dataset): male 
femurs were compared to female femurs and intact femurs were com-

pared to ones with tumors. Since the group variance was not exactly 
equal in all cases, the Welch’s t-test was used to examine the difference 
between the compared groups.

Efficiency evaluation

To evaluate the segmentation efficiency, processing time was mea-

sured by both GPU (Nvidia GeForce RTX 2080 Ti) and CPU (Intel(R) 
Core(TM) i7-6800K CPU @ 3.40GHz).

2.1.4. U-Net imbedded in an automatic clinical CT scan segmentation

For longitudinal AFE clinical applications it is of outmost importance 
to have an automatic and uniform protocol which is analyst indepen-

dent. Thus, the U-Net algorithm is imbedded into a comprehensive 
automated segmentation pipeline of clinical CT scans, as illustrated in 
Fig. 3. One of the main important steps in such a pipeline is the iden-
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tification of the distal slice from which segmentation should start. This 
slice is identified by locating the gap between patient’s legs (femurs) 
and thereafter identifying the knee. No knee found implies that the fe-

mur is not present at its full length thus the most distal slice of the CT 
scan is chosen.

The U-net algorithm is constructed so to be applied only on patient’s 
body, thus any dense foreign objects in the CT scan, such as for exam-

ple the CT bed itself (in some CT scanners), is removed. Such objects 
are removed by defining a mask which includes only the patients body. 
A threshold of 1200 CT number (corresponds to a very low Hounsfield 
Unit) is applied to the data (values below are set to zero). This removes 
soft tissue, particularly in the contact between the patient and the CT 
bed. The remaining CT values (corresponding to all bone tissues) are 
summed over z’ direction (slice out of plane direction) and transformed 
into a binary mask as shown in Fig. 3 (b). The resulting mask is a projec-

tion of the patient and the bed onto a slice sized image. Any holes found 
in the resulting mask are filled. Binary erosion followed by dilation op-

erations is performed to assure smoothness and separation between the 
bed and body. The mask is then restricted only to its largest component 
thereby leaving only the patient’s body. It should also be noted that only 
the top portion of the patient’s length/hight (1100 cm) is considered to 
generate the described mask. This is performed to avoid including the 
feet, which are commonly hanging off the bed thus forming a connec-

tion between bed and body.

The obtained mask is applied to all CT slices. To position the pa-

tient’s body at the center of the image, all images are uniformly shifted 
such that the center of the mask coincides with the center of the image. 
Images are thereafter cropped into half, keeping only the right image 
side (which includes the left femur). We did not consider any CNN clas-

sifier to separate the left and the right femur in the CT images because 
the position of the patient inside the CT scan is known and patients po-

sition registration is an inherent part of the scan protocol. If the right 
femur must be segmented, the CT slices may be flipped before segmen-
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Fig. 3. (a) CT data is loaded into a 3D array. (b) A binary projection only of hard tissue onto the xy plane. After additional processing and CT bed removal, the 
mask is applied to all CT slices. (c) A masked CT slice with the cropping boundaries is illustrated. (d) The leg gap is illustrated inside the frontal image. The image 
is obtained through a binary projection onto the xz plane of patients hard tissue forming a map of “bone presence”. (e) Bone width along the leg gap is plotted 
(after moving average). Second derivative is also shown (after scaling by 1000). Knee slice is identified. (f) A binary image of the knee slice with shaft and patella 
components (threshold CT number > 1200). (g) Bottom slice for segmentation is identified above the knee slice being the first slice without the patella. (h) The Fully 
segmented 3D femur. Images are processed by the U-Net from the bottom upwards until an empty mask is returned. Femur is obtained from the CT based on the 2D 
mask outputs.
tation (results are flipped back after segmentation). A masked CT slice 
with the cropping boundaries is illustrated in Fig. 3 (c). Through a se-

ries of thresholding and summation operations, the cropped images are 
transformed into a 2D “frontal image” binary map, representing bone 
presence. Note that if the bed would not have been removed, it would 
have interfered with the resulting image.

The longest consecutive gap (defined by missing bone) at the left 
side of the “frontal image” (middle of the patient) is identified and 
measured. This is most likely to be the gap between the patients legs 
(femurs). If the gap is longer than 150 mm, a “long” bone is identi-

fied as illustrated in Fig. 3 (d). Otherwise, bone is classified as short. 
For short bones the distal slice is initiated at the very bottom of the CT 
scan. For long bones it is initiated at the bottom of the leg gap and will 
shift only if a knee is identified. To identify the knee, pixel values are 
summed over the rows of the frontal image, representing a measure of 
bone “width”. The width (as a function of z’) is plotted along with its 
second derivative as illustrated in Fig. 3 (e). Based on the plotted data, 
the algorithm identifies the first width peak. This peak corresponds with 
the widest femoral region which anatomically matches the middle of the 
knee.

The identified knee slice includes both the femur and the patella 
(Fig. 3 (f)). It is used as the lower bound to seek the distal slice for seg-

mentation. Here we defined the distal image from which segmentation 
should start as the first image above the knee slice which has only one 
component (femoral shaft without patella). The bounding box of the 
single component in the ‘x’ direction (horizontal) must be greater than 
in the ‘y’ (vertical) direction by at least 10% illustrated in Fig. 3 (g). 
The object count alone is an insufficient criterion since the patella may 
appear connected to the femur. Note that the pipeline described here is 
adjusted to produce an output fit for finite element model construction 
without the knee.

Segmentation is performed from the bottom slice upwards until an 
empty mask is returned indicating that the pelvis is reached and seg-

mentation may be stopped. A segmented 3D femur is shown in Fig. 3

(h).
20
2.2. Results

The average metrics for the 43 “test” femurs are reported in Table 2

for different femoral portions defined by their length. Seven of the 43 
femurs were segmented from an abdominal CT where the femur was 
shorter than 150 mm. These were excluded from the statistics for the 
proximal 150 mm segment. When comparing male to female or intact 
femurs to ones with tumors, metrics were found to be very similar. No 
statistically significant differences were observed (based on the studen-

t’s t-test). An example of fully segmented long and short femurs together 
with their evaluation metrics are presented in Figs. 4 and 5. Individual 
image masks are shown in Fig. 6. These include slice images of healthy 
typical bones as well as images of bones with tumors.

2.2.1. Algorithm efficiency

The U-Net processes a single image in less than 0.4 seconds on a CPU 
(Intel(R) Core(TM) i7-6800K CPU @ 3.40GHz). GPU (Nvidia GeForce 
RTX 2080 Ti) process time was about 0.05 seconds (up to 8 times 
faster). A full length femur having 1 mm slice spacing (about 500 slices) 
would be processed in 25 seconds on the GPU and in 185 seconds on 
the CPU. The rest of the operations in the pipeline (besides U-Net pro-

cessing) were performed on CPU and added 0.05 seconds per slice on 
average (see the pipeline running times provided in Figs. 4 and 5).

2.3. The segmentation algorithm within the framework of AFE in a real 
clinical environment

An important evaluation of a segmentation algorithm is its robust-

ness in a real clinical environment. The robustness was tested on pre-

liminary data of a clinical trial aimed at determining the risk of fracture 
in femurs of the elderly population. The segmentation algorithm has 
been implemented into the AFE solver Simfini.1 The automatic identi-

fication and segmentation of the femurs are the first two steps in the 
entire AFE procedure, followed by identification of anatomical points, 
application of a fall on the side loading condition, meshing the femur 

1 Simfini is a trademark of PerSimiO, Beer-Sheva, Israel.
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Table 2

Evaluation metrics considering 43 “test” femurs are reported for the different femoral portions (7 femurs that were taken from abdominal CT scans containing only 
the proximal shaft were excluded from “150 mm statistics”). Mean and standard deviation (parentheses) are reported. Hausdorff distance (HD) and symmetric and 
absolute average surface distance (ASD) are given in mm.

length mm DSC IoU Sensitivity Specificity HD ASD

50 0.9882 (0.0043) 0.9766 (0.0083) 0.9875 (0.0054) 0.9996 (0.0003) 3.9473 (1.407) 0.2211 (0.0684)

100 0.9908 (0.003) 0.9817 (0.0058) 0.9891 (0.0046) 0.9997 (0.0002) 4.1894 (1.5293) 0.1748 (0.0474)

150 0.9913 (0.0026) 0.9827 (0.0052) 0.9892 (0.0049) 0.9998 (0.0001) 4.2133 (1.444) 0.1526 (0.0546)

full 0.9924 (0.0021) 0.9849 (0.0042) 0.9889 (0.0045) 0.9999 (0.0001) 4.3315 (1.5596) 0.1326 (0.0332)
Fig. 4. Segmentation performance is demonstrated on a CT scan of a 41 years 
old female. A long left femur is segmented. Evaluation metrics are reported 
for different femoral volumes. The total analysis time is 27 seconds on a GPU 
(Nvidia GeForce RTX 2080 Ti).

Fig. 5. Segmentation performance is demonstrated on a CT scan of a 60 years 
old male. A short left femur is segmented. Evaluation metrics are reported for 
different femoral volumes. The total analysis time is 11 seconds on a GPU 
(Nvidia GeForce RTX 2080 Ti).

domain, perform a finite element analysis and post-process the results 
to identify the risk of fracture. Details on the AFE are provided in [1,11]

and a flowchart is shown in Fig. 7. The AFE solver was applied to 484 
CT scans (968 femurs) of lower abdomen (most of which contained only 
the proximal part of the femur), from very different scanners (different 
models of GE and Philips) with different pixel size resolutions (ranging 
from 0.6 to 3.0 mm slice thickness), and a wide range of patients age 
and weight. A successful outcome of the AFE was obtained for over 91% 
of the CT scans [45]. Since most of AFE analyses failed after a successful 
segmentation (in the meshing stage or if only one of the femurs was suc-
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cessfully segmented), the segmentation success rate is better than 95%, 
which is considered to be a high robustness rate (compared for example 
with 87% in [46] - there vertebrae were considered on a larger cohort).

2.4. Examples for the use of AFE in clinical practice

The presented improved segmentation algorithm replaced the con-

volution neural network segmentation algorithm of the AFE system 
Simfini presented in [1]. The AFE in [1] is briefly summarized with 
an emphasis on enhancements enabling endocrinologists to determine 
risk of hip fracture in the elderly population. Once femurs segmenta-

tion is available, a finite element mesh consisting of tetrahedrons with 
curved faces is automatically generated for the patient, followed by an 
efficient high-order linear elastic FE solver that solves the system of fi-

nite element equations and generates the data of interest.

Linear elasticity well represents femur’s response under physiolog-

ical loading, and although the bone at the macroscopic level is or-

thotropic, excellent predictions were obtained using isotropic inhomo-

geneous relations (see [47] for stance position loading and [48] for 
sideways fall loading). Pointwise inhomogeneous mechanical proper-

ties at each integration point within each element are determined by 
the Hounsfield Units (HU) in the closest voxel in the CT scan. The rela-

tionships between Young’s modulus and HU, validated in experimental 
settings [47], are used. Verification of the numerical errors is assured 
by automatic monitoring of the error in energy norm and the maxi-

mum and minimum principal strains at the locations of interest as the 
polynomial degree over the elements is increased from 1 to 6 or 8.

The AFE determines anatomical points (center of femur’s head, 
intercondylar notch, and center of shaft 20 mm below the lesser 
trochanter), required for the application of the different boundary con-

ditions. In addition to a stance position load that acts along the vector 
connecting the head center and intercondylar notch, two other load 
directions were implemented to mimic sidewise falls, defined by the 
angles 𝛾 and 𝛿 shown in Fig. 8. The angle 𝛾 represents the angle be-

tween the shaft and the ground during impact and is related to the 
amount of knee flexion present if the foot is on the ground, and 𝛿
reflects the amount of internal or external rotation of the femur rela-

tive to the ground. It has been found that neck fractures are associated 
with one set of specific angles, (𝛾𝑁 , 𝛿𝑁 ), where 𝛾𝑁 = 10𝑜 and 𝛿𝑁 = 15𝑜, 
while pertrochanteric fractures are associated with another set of spe-

cific angles, (𝛾𝑃 , 𝛿𝑃 ), where 𝛾𝑃 = 30𝑜 and 𝛿𝑃 = 45𝑜. The distal shaft is 
constrained for displacements along shaft axis and at the contralateral 
location of the load, in the load direction. Almost half of the hip frac-

tures due to a sidewise fall are neck and half are pertrochanteric.

We present in Fig. 9 two examples of femurs of two patients au-

tomatically segmented from lower-abdomen CT scans, with the three 
different loadings presented (stance and two fall on the side) that are 
solved sequentially. In Table 3 the three different boundary conditions 
are summarized.

Each model has about 9000-10,000 high order finite elements result-

ing in about 900,000 degrees of freedom at p=6. The entire simulation 
time including the pre and post processing for both femurs for one pa-

tient is about one hour on a standard PC.
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Fig. 6. The agreement between manual segmentation and U-net predictions is demonstrated on slices of intact femurs (top) and femurs with tumors (bottom). Blue 
pixels represent the intersection of both masks. Red pixels are exclusive to the manual segmentation and green are exclusive to U-Net predictions. Evaluation metrics 
are reported for each image. ASD and HD are reported in pixels.

Fig. 7. Schematic algorithm (from [13]) of the patient-specific AFE system Simfini. a) CT scan of patient’s femurs, b) Automatic segmentation, c) Geometry and 
material representation, d) High-order FE mesh, e) Application of loading boundary conditions, f) Principal strains extraction.

Fig. 8. Boundary conditions on the femur that determine sidewise falls.
22
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Table 3

Summary of the three physiological boundary conditions.

Physiologic 
load

Magnitude Load application Load Direction Displacements BCs. Details

Stance 2.5 body Femoral head Vector connecting Clamped at

weight on top head center and distal Shaft

intercondylar notch.

Sidewise 2.5 body Femoral head 𝛾𝑁 = 10𝑜, 𝛿𝑁 = 15𝑜 Clamped at distal shaft, Fig. 8, 9

Fall weight 𝛾𝑃 = 30𝑜, 𝛿𝑃 = 45𝑜 and zero displacement along

load direction at greater trochanter

Fig. 9. Stance and two sidewise fall loads (light blue) and displacements boundary conditions (red) on the FE meshes representing two different patients.
2.4.1. The need of a prophylactic surgery - femurs with tumors

Patients with tumors in their femur may be at risk of a pathological 
fracture under daily activities. For these patients an AFE is performed 
under a stance position loading. The “typical median principal strains” 
for 5 regions (neck, trochanter, proximal shaft, middle shaft and dis-

tal shaft) in a “healthy femur” were computed based on 12 femurs as 
detailed elsewhere [11]. The ratio between the absolute maximum prin-

cipal strain in the diseased femur and the median strain in the same 
anatomical region of the disease-free femur is calculated and labeled 
the “strain fold ratio” (SFR). A SFR value of 1.48 was used as the de-

terminant of the threshold for a pathological femoral fracture [11]. The 
SFR is computed for both femurs of each patient. The location at which 
the highest SFR (larger than 1.48) is obtained in the AFE is estimated 
to be the location of the expected pathological fracture (in some cases 
there were more than one region at which SFR>1.48). This algorithm 
has been shown to well predict the risk of a pathological fracture, and 
is being used in clinical practice to assist orthopedic oncologists to de-

termine the need of a prophylactic surgery. Recently, AFE has been 
extended to monitor patients who undergo radiation therapy. As an ex-

ample we present the case of a seventy-four years old male (weight 
of 80 kg) with multiple myeloma lytic bone lesions who was recom-

mended radiation therapy. Two months following the radiation therapy 
treatment, he complained about pain in his right femur. The orthopedic 
oncology surgeon, by inspecting visually the CT scans after the radia-

tion therapy and two months later, could not detect any differences and 
performed an AFE analysis. In Fig. 10 one may see there is no much 
differences in the CT slices at the location of interest taken two months 
apart. However, the AFE analysis detected a high SFR at the right femur 
well above 1.48, and furthermore, exactly at the location of interest the 
SFR increased by 30% at one location between the two CT-scans. The 
ration between the SFRs computed using the two CT scans remained 
around 1 or less in the left femur and in all other locations in the right 
femur. This indicated the need for a prophylactic surgery which the or-

thopedic oncologist surgeon performed immediately following the AFE 
analysis, as shown in the right bottom corner of Fig. 10.

2.4.2. The need of a prophylactic surgery - young patient with irregular 
shaped femur

By using the SFR, there are cases where an orthopedic surgeon has 
to decide on the need of a prophylactic surgery to stiffen the femur 
if weakening is assumed. For example, a thirty-three years old female 
23
(weight of 74 kg) had in her past two surgeries to both left and right 
femurs, and in a recent CT scan an anomalous configuration was noticed 
in her left femur during a monitoring CT scan, see left of Fig. 11. The 
surgeon could not decide whether to perform a prophylactic surgery 
or not, therefore an AFE was performed. The results clearly show that 
the SFR in the left femur is well bellow 1 in the area of interest. No 
surgery was performed, and so far the patient does not complain of any 
discomfort or problem.

2.4.3. Risk of hip fracture in the elderly as a result of a sidewise fall

Post processing the AFE results obtained for all three boundary con-

ditions (stance and two sidewise falls) by a machine-learning algorithm 
(support vector machine (SVM)), considering also the gender, height, 
weight and age, can provide an unprecedented ability to differentiate 
between the elderly population at a high risk of hip fracture as a result 
of a sidewise fall. To this end we analyzed by AFE abdominal/pelvis CT 
scans of patients who experienced a hip fracture within two years after 
acquiring a CT scan together with a control group of patients without 
a known hip fracture for at least five years after acquiring a CT scan. 
Overall 836 femurs were analyzed (432 intact femurs and 404 fractured 
ones). The results were processed by the SVM algorithm. These CT scans 
only contained the proximal part of the femurs, usually having no more 
than 2-3 cm distal to the lesser trochanter. Details are given in [45]. The 
sensitivity and specificity of the SVM based on AFE to determine frac-

ture risk are 86% (with a 95% CI interval of 73-89%) and 79% (with 
a 95% CI interval of 75-82%). Comparing to the gold-standard DXA 
for example used nowadays in clinical practice, having a sensitivity in 
women of 52% (with a 95% CI interval of 47-56%) and specificity of 
77% (with a 95% CI interval of 73-81%) and having a sensitivity in men 
of 43% (with a 95% CI interval of 37-50%) and specificity of 83% (with 
a 95% CI interval of 77-88%) [51], our proposed AFE measures are by 
far better.

Combining AFE data with a ML algorithm provides an unprece-

dented prediction accuracy for the risk of hip fracture in the elderly 
populations. The fully autonomous algorithm can be applied as an op-

portunistic process on lower abdomen CT scans for hip fracture risk 
assessment.
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Fig. 10. Seventy-four years old male patient with multiple myeloma lytic bone lesions. Left - two CT scans two months apart. Right - AFE results, the increase in 
SFR at a specific location and X-ray following the prophylactic surgery that strengthen the right femur.

Fig. 11. Thirty-three years old female patient with anomalous left femur due to metabolic bone disease. Left - CT scan. Right - AFE results, demonstrating sufficient 
strengthen of the left femur.
3. Discussion and conclusions

A fully automatic and robust segmentation for femurs from clinical 
CT scans was presented implemented and used in an AFE. An excellent 
performance for intact femurs and femurs with tumors was demon-

strated. It is appropriate for a large range of image resolutions and is 
independent of the slice spacing and femoral length. The methodology 
may be easily generalized to other bones as vertebrae, humeri, etc. The 
advantage of the presented algorithm compared to state-of-the-art algo-

rithms, see [34] for example, is its flexibility and robustness. It is not 
restricted to a specific slice spacing or pixel size, was shown to perform 
24
well for femurs with or without tumors, and tested on CT scans from 
different CT scanners. It is fully autonomous and it accounts also for 
the identification of the femoral slices inside the CT scan (most former 
studies did not consider this important ingredient for a fully automatic 
algorithms, see e.g. [17–25,29,32–36,49]).

Because performance metrics improve as larger parts of the fe-

mur are considered (including more shaft domain), a metric which 
distinguishes between the different femoral portions was proposed (Ta-

ble 2). A comparison to former publications is presented in Table 4. To 
emphasize the performance of our algorithm we adopted a conserva-

tive approach (metrics considering the proximal femoral portion, top 
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Table 4

Comparison of performance to former segmentation algorithms. A conservative femoral length of 100 mm was chosen for comparison. Best performance in boldface.

Study Femur 
length

Method DSC/

Dice

IoU/

Jaccard

Sensitivity/

recall

Specificity HD

(mm)

ASSD/

ASD (mm)

[17], evaluated 
in [18]

Proximal Classic 
methods

0.9036 
(0.0531)

NA NA NA NA 1.31 
(1.21)

[24], evaluated 
in [18]

Proximal SSM 0.9014 
(0.0195)

NA NA NA NA 1.49 
(1.04)

[25]* Full length SSM NA NA NA NA NA 1.21 
(0.35)

[18] Proximal Classic 
methods

0.9155 
(0.0482)

NA NA NA NA 1.22 
(0.98)

[21]* Proximal MA 0.950 
(0.024)

NA 0.956 
(0.041)

0.997 
(0.001)

NA 0.846 
(0.456)

[21]* Proximal SSM 0.946 
(0.013)

NA 0.964 
(0.020)

0.998 
(0.001)

NA 0.910 
(0.309)

[50] Full length SSM 0.87 
(0.026)

NA NA NA 10.53 
(3.19)

1.48 
(0.28)

[22] Proximal MA 0.976 
(0.006)

0.953 
(0.011)

0.97

(0.01)

NA NA 0.203 
(0.057)

[23] Proximal MA SSM 
combined

0.9735 
(0.0085)

NA NA NA NA 0.465 
(0.900)

[49] Full length SSM 0.94 
(0.016)

NA NA NA 4.336 
(0.861)

1.014 
(0.474)

[32]* Proximal V-Net 0.987 (NA) 0.974 
(NA)

0.982

(NA)

NA 6.4 (NA) 0.22

(NA)

[36]* Proximal V-Net 0.953 
(0.016)

NA 0.953 
(0.030)

NA 7.88 (4.33) 0.39 
(0.19)

[36]* Proximal U-Net 0.960 
(0.022)

NA 0.943 
(0.036)

NA 8.18 (5.87) 0.39 
(0.44)

[19] Mid length Phase-field 0.9339 
(0.0287)

NA 0.9339 
(0.0287)

0.9855 
(0.0115)

NA NA

[20] Proximal Patch 
based

0.9490 
(0.0070)

NA NA NA NA 0.52 
(0.08)

[29] Full length FCN 0.9688 
(0.0095)

NA NA NA NA 0.41 
(0.11)

[1] Full length CNN 0.98 
(0.003)

NA NA NA NA 0.36 
(0.05)

[33], evaluated 
in [34]

Proximal V-Net 0.9815 
(0.0009)

NA 0.9906 
(0.0033)

0.9990 
(0.0000)

9.144 
(2.096)

NA**

[34] Proximal ST-V-Net 0.9888 
(0.0047)

NA 0.9966 
(0.0013)

0.9988 
(0.0001)

5.917 
(1.412)

NA**

[35] Proximal U-net 0.990 
(0.008)

NA NA NA 5.9-10.6*** NA

Current study Proximal 
(100 mm)

U-Net 0.9908 
(0.0030)

0.9817 
(0.0058)

0.9891 
(0.0046)

0.9997 
(0.0002)

4.19 (1.53) 0.1748 
(0.0474)

* Magnetic resonance imaging (MRI) used (not CT).
** Although reported as ASD in the papers, distances were addressed as relative (not absolute) and only from predictions to ground truth (not symmetric). Positive and negative 

distances cancel out each other. Thus providing a misleadingly better measure which can’t be considered ASD.
*** Only the 95th percentile is reported HD95 = 1 mm, but two cases are shown with HD95 5.9 mm and 10.6 mm.
100 mm). A test set of 43 femurs was used, similar to other recent high 
performing algorithms such as [33,34] (n=40) and [1] (n=41). To the 
best of our knowledge, the performance metrics obtained for the pre-

sented algorithm are close to optimal for femoral segmentation and also 
to [35] tested on over 1000 femurs. Under the constraint of the limited 
sample size, no evidence for difference between the compared groups 
was observed.

Since 3D images contain more details, it is conceivable that 3D V-

Net models, such as used in previous deep learning based algorithms 
[32–35] might be more suitable for femoral segmentation. On the other 
hand, a major downside of 3D inputs is their large size which demands a 
significant amount of memory. Consequently, the large input size comes 
at the expense of the depth and capacity of the network. In other words, 
it will always be possible to construct deeper U-Net models than V-Net 
models. For example, the V-Net suggested in [33] and [34] had half 
25
the number of convolution filters in each convolution layer compared 
to the U-Net, and only 3 down/up steps in the contraction/expansion 
paths (four such steps in the U-Net). The V-Net resulted in 8.6 mil-

lion trainable parameters whereas the U-Net had over 31 million (GPUs 
with similar memory were used). The large 3D inputs also affect the 
efficiency of the training procedure, imposing smaller training batches 
sizes. The amount of training data is also smaller, each femur is equiv-

alent to one 3D image. With 2D inputs, hundreds of images may be 
extracted from the same femur. U-Nets, heaving inputs smaller in size 
and less complex, allow the network to adapt for larger image variabil-

ity, and construct deeper networks with greater capacity and flexibility. 
Thereby, enabling segmentation of a larger variety of image types i.e. 
images of different resolutions, obtained from different bone regions 
and with different bone anomalies caused by various diseases. Based on 
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the numerous advantages, we advocate the use of 2D U-Net models for 
femoral segmentation instead on 3D V-Net models.

The current algorithm is also more efficient and more accurate than 
the CNN algorithm presented in [1]. The latter was designed to classify 
hip joint voxels into pelvic and femoral. The hip joint region includes 
hundreds of thousands of such voxels that must be classified. Thus, the 
CNN segmentation becomes very time consuming and strongly depen-

dent on GPU resources for efficiency improvement. The U-Net processes 
an entire slice at each iteration, thus substantially increasing efficiency 
enabling the segmentation to be performed within a reasonable amount 
of time even on a CPU (below 0.4 seconds per slice).

We noticed that in numerous cases the mask predicted by the U-Net 
was more accurate than the manual mask, several such cases may be 
found in Fig. 6. This is not surprising since manual segmentation is a 
long exhausting procedure which may include human errors. The U-Net 
on the other hand, adapts itself to recognize the patterns common to the 
majority of cases thus neglecting human random errors.

Combining the improved automatic segmentation in the AFE pre-

sented in [1] resulted in an improved AFE that allows surgeons to use 
advanced computational mechanics in daily clinical practice for patient 
specific medicine. We presented two recent real life applications of the 
use of AFE that allowed orthopedic surgeons to scientifically determine 
the need of a prophylactic surgery. In one case a patient was identified 
just before a pathological fracture and in the other case an unnecessary 
surgery was avoided in a young patient.

We also enhanced the AFE to consider the elderly population by 
including sidewise fall loading conditions. This enhancement, together 
with a clinical study on 836 different femurs and an SVP ML algorithm 
showed to predict with high sensitivity and specificity these with a high 
risk of hip fracture within the next 2 years as a result of a sidewise 
fall. The AFE opens the path for accurate and efficient fracture risk 
prediction by opportunistic analysis of lower abdomen CT scans in the 
elderly population.
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