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1 Introduction

Active response of arteries is much less investigated compared to the passive
response. An arterial wall is composed of three layers: intima, media and adven-
titia, of which, only the media and adventitia are assumed to be mechanically
relevant. The collagen fibers and elastin matrix are responsible for the passive
anisotropic behavior whereas smooth muscle cells (SMCs) are responsible for
the active behavior of the artery. The media is composed of collagen fibers,
SMCs and elastin. The adventitia, however, contains much less SMCs, and
may be considered as not contributing to the active response. Thus, the media
contributes to both the active and the passive response while the adventitia
contributes only to the passive response of the artery. The total response of an
artery is the sum of the active and passive responses. There exist many models
for describing the passive response of arteries, see (Fung et al, 1979; Delfino
et al, 1997; Holzapfel et al, 2000; Zulliger et al, 2004a; Hollander et al, 2011;
Nolan et al, 2014). However, only few investigations address the numerical
simulation of the active response. This is discussed in the following.

In human bodies, when agitated or excited, sympathetic activation of the
adrenal glands causes the adrenal medulla to release norepinephrine (also
called noradrenaline) into the bloodstream which guarantees access to a wide
variety of tissues, see (Hamill et al, 1996; De La Lande et al, 1974). The
norepinephrine (NE) in the bloodstream diffuses from the lumen into the ar-
terial wall through the intima into the media where the SMCs contract, see
(Hermsmeyer, 1983). The contraction of the SMCs present in media may be
triggered by chemical, neural or mechanical signals and is known as the active
response of the artery, see (Humphrey, 2002). Chemical stimuli are what causes
most of the contractions in SMCs. It is the contraction of the SMCs in the
artery that governs the luminal area and the distensibility and consequently
regulates the flow of blood in the artery. It has been experimentally proven
that the increased concentration of calcium ions within SMCs regulates the
contraction, see (Aoki et al, 1994; Grover and Daniels, 2012). In this paper,
the diffusion process of NE into the blood vessel thereby causing the muscle
cells to contract is modeled by coupling diffusion equation with the mechani-
cal model based on Yosibash and Priel (2012). Following the implementation
of the model in the in-house finite element program Tasafem, finite element
analyses are carried out for coupled and time-adaptive simulations.

The SMCs are spindle or fusiform shaped with a nucleus at the center.
An SMC bundle is generally in the range 2 — 10 pm thick and 20 — 200 pm
long. Contractions in SMCs are much slower than other muscle cells and can
resist fatigue for much longer than other types of muscles. This is attributed to
the lower rate of oxygen and energy consumption. For more detailed informa-
tion on the biochemistry of SMCs, see (Barany, 1996; Mecham and Schwartz,
1995). In order to contract, SMCs have to increase the amount of calcium ions
in the sarcoplasm. The calcium ions bind to calmodulin protein present in the
sarcoplasm to make calcium-calmodulin complex which activates an enzyme
called myosin light chain kinase which phosphorylates myosin light chains in
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the presence of Adenosine Tri-phosphate (ATP). The phosphorylation of these
chains present in the myosin heads leads to cross-bridge formation between the
myosin heads and the actin filaments, thereby contracting the smooth muscle.
This is known as the sliding filament theory, see (Huxley, 1953). For more
detailed understanding of the contraction and the relaxation of the SMCs, see
(Klabunde, 2005). The constitutive modeling of the passive response of ar-
teries has been widely addressed in previous publications comparing to works
on the active response of arteries. Most of the models proposed are based on
one-dimensional formulations. A dynamic model based on the sliding filament
theory was proposed by Gestrelius and Borgstrom (1986). The model was then
compared to the mechanical response of SMCs in a rat portal vein and was
found out to be in good accordance with the experiment under isotonic and iso-
metric conditions. Rachev and Hayashi (1999) proposed a mathematical model
assuming the artery to be a thick-walled orthotropic tube made of non-linear,
incompressible elastic material. They considered that an active circumferential
stress is generated in the wall due to the contraction of the SMCs. This was
quantified with the help of an additional non-negative active stress in the arte-
rial wall. It was concluded that the active stress generated by the contraction
of the SMCs depends on the intensity of stimulation and the stretch ratio.
However, the authors were not able to provide a conclusive relation between
the chemical concentration and the active stress. Another limitation of the
proposed model was the assumption that the length-active tension relation-
ship and the dose-active tension relationship are independent to each other
and separately on the stretch. Zulliger et al (2004b) proposed a pseudo-strain
energy to describe the active response of the artery. The SMCs were consid-
ered as a structural element when compared to previous proposals where the
effects of SMCs were included through generation of active stress. A universal
model for the elastic, inelastic and active behavior of arteries was proposed by
Itskov and Ehret (2009) based on strain-energy function depending on strain
invariants associated with fiber directions were used for this model. The coef-
ficients of the linear combinations of the classical structural and the identity
tensor work as weighting factors controlling the anisotropic behavior. Active
response and softening could be modeled by changing these weighting factors.
A mechanochemical micromechanical model was proposed by Murtada et al
(2010) based on Hill’s three-component model. A strain-energy function along
with an evolution equation was used to model the activation of artery. The
authors adopted the model proposed by Hai and Murphy (1988) to model the
chemical link between Ca?* ion concentration and muscle contraction. This
model was further extended by Murtada et al (2012) to include an additional
parameter which incorporates the dependence of filament overlap and the slid-
ing filament theory. For the first time, relaxation of artery was also simulated
by the authors. The change in intracellular calcium which has an influence on
the stress state of an activated artery was analyzed to determine the role of
SMC contraction in large elastic arteries, see (Murtada and Holzapfel, 2014).
The model proposed by Murtada et al (2012) was implemented into the finite
element framework and was verified using isometric contraction and relax-
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ation. A new multiscale mathematical model combining the effects of actin
and myosin filament overlap and filament lattice spacing, which also has a
significant influence on the active stress state, was proposed by Murtada et al
(2017). Stalhand et al (2008), for the first time, proposed a strain-energy func-
tion that includes the chemical kinetics and the kinematics to model active
response of the artery. However, this model was restricted to one dimension
and was further extended by Stalhand et al (2011) to three dimensions. A
new model to include the membrane excitation process, myosin phosphory-
lation process, and the contraction mechanics was proposed by Sharifimajd
and Stalhand (2014). Schmitz and Bél (2011) proposed a strain-energy func-
tion as a sum of a passive strain-energy function, and an active strain-energy
function characterizing the calcium driven chemical contraction of SMCs. The
model also included the dispersions of the orientations of SMCs and collagen
fibers. Bol et al (2012) extended the proposed strain-energy function to de-
scribe the calcium phase of the contraction using the cross-bridge model of Hai
and Murphy (1988). A micro-structural constitutive model of active response
in the case of porcine coronary media was proposed by Chen et al (2013a) to
predict the biaxial response. They also determined the dimensions and orien-
tation of SMCs. This data was coupled with a two-dimensional constitutive
model to predict circumferential and axial deformation. However, the limita-
tion is that it is a two-dimensional model. The model was based on a biaxial
active strain-energy function proposed by Huo et al (2012). Constitutive for-
mulation of active response of porcine renal artery based on in-vitro biaxial
(tension-inflation) tests was provided by Zhou et al (2015). The investigation
was limited to fully relaxed or contracted SMCs. The authors concluded that
the stimulation of SMCs generates both circumferential as well as axial stress.
Pandolfi et al (2016) developed a constitutive model where the active response
of the fibers is modeled using a strain-energy function which characterizes
the mechanical and electrical behavior of the artery. Stalhand et al (2016)
discussed the thermodynamics of SMC contraction to understand better the
shortening of the muscles and the heat generated. A strain-energy density func-
tion based on Rachev and Hayashi (1999) was proposed by Yosibash and Priel
(2012) to model the active response of arteries. The superiority of p-FEMs
(high-order spatial discretization using integrated Legendre polynomials) over
the h-FEMSs for solving the coupled passive-active response was demonstrated
in that paper. This is done similarly by (Sepahi et al, 2017), however, with a
stronger focus on the numerical treatment. In our paper, the model proposed
by Yosibash and Priel (2012) is coupled with diffusion equation to represent
the activation of the artery.

The coupling of diffusion with mechanical model is widely used in biome-
chanics. Tumor growth prediction in different parts of the body like kidney,
brain etc. was modeled using reaction-diffusion equation by (Menze et al, 2011;
Chen et al, 2013b; Wong et al, 2015). The coupling of linear elasticity and a
system of reaction-diffusion and ordinary differential equations were modeled
for plant cell wall by (Ptashnyk and Seguin, 2016; Piatnitski and Ptashnyk,
2017). Lefevre and Mangin (2010) coupled the reaction-diffusion to mechanical
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model to human brain development. The concept of coupling of diffusion equa-
tions with mechanical models has been used in other fields also. The calcium
leaching of cementitious materials within the framework of reactive porous
media was formulated using chemo-mechanical damage models, see (Kuhl and
Meschke, 2003, 2004; Kuhl et al, 2004a,b).

The numerical treatment of coupling diffusion with mechanical model is
similar to thermo-mechanically coupled problem. Ellsiepen and Hartmann
(2001) applied high-order time-integration finite elements, based on the pre-
vious investigations of Wittekindt (1991) and Fritzen (1997). Here, a con-
sistent application of the method of vertical lines is applied to the resulting
system of differential-algebraic equations, see (Hartmann and Rothe, 2013).
As a first step, the spatial discretization yielding, in dependence of the un-
derlying problem, algebraic equations, ordinary differential equations (ODE),
or differential-algebraic equations (DAE). If the systems are ODEs or DAEs,
diagonally-implicit Runge-Kutta methods (DIRK) might be chosen for time-
integration. This leads to a system of non-linear equations (depending on the
problem). These non-linear equations have to be solved using a Newton-like al-
gorithm. In this respect, we refer to (Hartmann, 2005; Hartmann et al, 2009b;
Netz and Hartmann, 2015; Rothe et al, 2015b).

DIRK-methods might show order-reduction phenomena if non-linear Dirich-
let boundary conditions are applied. This holds for parabolic and hyperbolic-
like problems. These problems can be transferred to DAE-systems if the dif-
ferential part is of such an equation-type, see (Rothe et al, 2015b). Thus, the
order analysis for different loading conditions must be investigated. The order
obtained from the simulations are compared to theoretical orders. The goal is
to obtain at least second order accuracy to apply error estimation for the time-
adaptive scheme. In Grafenhorst et al (2017), order analysis was performed
for a thermo-viscoplasticity Perzyna/Chaboche-type model with non-linear
kinematic hardening. Time-adaptivity was also extensively discussed by the
authors. The difference between dynamic and quasi-static computation was
also detailed. In our paper, order analysis is performed for linear as well as
non-linear loading paths. In the case of non-linear loading paths, it is widely
known that the theoretical order cannot be achieved (order reduction phe-
nomenon). This is overcome using an approach of Alonso-Mallo (2002) and
Alonso-Mallo and Cano (2004), where the Dirichlet boundary conditions are
integrated as well. Based on these investigations, step-size controlled computa-
tions are performed for blood pressure cycles. Blood pressure cycles are highly
non-linear external loads over the time requiring step-size controlled schemes,
see (Hairer et al, 1993; Gustafsson et al, 1988; Gustafsson, 1994).

The structure of the paper is as follows: first, the constitutive model of
the active response is discussed. This is followed by the numerical treatment
of the coupled problem, where the concentration of the NE is modeled using
the diffusion equation so that an inhomogeneous distribution of the activation
is described. In the subsequent section, two examples are provided. The first
is used to study the convergence behavior for order analysis using linear and
non-linear loading. The second example is to show the advantage of time-
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adaptive behavior when a complicated loading condition like pressure cycle of
blood flowing through blood vessels is used, combined with the activation of
the muscle cells.

The notation in use is defined in the following manner: geometrical vectors
are symbolized by a, second-order tensors A by bold-faced Roman letters, and
calligraphic letters A define fourth order tensors. Furthermore, we introduce
matrices at global level symbolized by bold-faced italic letters A and matrices
on local level using bold-faced Roman letters A.

2 Constitutive Modeling of the Passive and Active Responses of
Artery

The stress response of the artery is assumed to be the sum of the active and
passive response of the artery

T = Tact + Tpas (1)

where T is the Cauchy stress tensor, Ty is the active stress part, and Tpas
is the passive stress part. In order to model the passive response of the artery,
based on the histological findings by Rhodin (2011), the artery is assumed to be
hyperelastic and a strain-energy density function is considered, see (Holzapfel
et al, 2000; Nolan et al, 2014), for two family of fibers. A viscoelastic response
as mentioned, for example, in (Holzapfel et al, 2002) or shown experimentally
in (Gilbert et al, 2016), is neglected. The two fiber directions are defined
by ag and a; with |ag] = |a;| = 1 and form normalized tangent vectors at
two helices, see Fig. 1. These vectors are defined by ag = —Y/RcosSe, +

Media

|
[ Adventitia lv Y

Fig. 1: Helical fibers in an artery

X/Rcosfe,—sinfe, and a; = X/Rcosfe, —Y/Rcosfe, +sinfe, in the
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case of cylindrical coordinates, where R = /X2 +Y?2. 8 defines the angle
between the circumferential direction and the fiber orientation. The motion of
the material body is given by x = xr(X, t), where X represents the material
placement vector to point in the reference configuration and x is the current
placement of the point at time ¢. The deformation gradient, which indicates the
local change in deformation, is defined by F = Grad xr(X,t). The principal
invariants of the right Cauchy-Green tensor C = FTF are I}, = trC, I, =
1((trC)? — trC?) and I3 = det C and the mixed invariants Iy = C- M, =
ag - Cay and Is = C-M; = a; - Ca; are used to define the strain-energy
function B

Ppas(C, Mo, M) = tpas (11, I2, I3, 1y, I). (2)
My = ag®ag and M; = a;®a; are called structural tensors. The strain-energy
function is decomposed into an isotropic and an anisotropic part

7vZJI.'xaLS(C:» M07 Ml) N ¢iso(C) + 1Z)aniso(cjv MO» Ml) (3)

where the isotropic part is the sum of a volume-changing and a volume-
preserving part

¢iso(J7 é) = 1/)isoch (é) + ¢VOI(J)~ (4)

The volume-changing part prvo1(J) = K(J° + J~° — 2)/50 depends on the
determinant of the deformation gradient J := det F. With regard to the dis-
cussion in (Hartmann and Neff, 2003), the strain-energy function is chosen, in-
stead of the common ansatz ¢, (J) = K/2(J—1)2, to circumvent non-physical
behavior in tension and compression. The volume-preserving part depends
on the unimodular right Cauchy-Green tensor C = F'F = (det C)~1/3C
with F = (det F)_1/3F and det F = 1. The simplest model is given by the
Neo-Hookean model prtisoch(Ig) = cio(tr C — 3)/2 with the first invariant
Ig = I;J72/3. Further, following (Nolan et al, 2014), the strain-energy func-
tion

Paniso(C, Mo, M) = 2% <(€k2(14—1)2 _ 1) + (ek2(16—1)2 _ 1)) (5)

associated with the fibers is chosen. The second Piola-Kirchhoff tensor for the
passive response of the artery reads

- _ 8¢pas _ dwiso awaniso o
Thas = 20r 75 _QpR<dc T )T
_ 5 _  7-5 -1
= 11 Oi (JS—J

. 1 :
+ J72/3010 (I _ g(tr C)Cfl) + 2k, <(I4 _ 1)6162(1471)21\/[0 n (Iﬁ . 1)ek2(161)zM1> .
(6)

Due to the presence of collagen fibers in both the media and the adventitia,
the strain-energy function is attributed to both layers (adventitia and media)
but having different material parameters in each layer. The active response
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of arteries is attributed to the SMCs. The SMCs are assumed to be present
only in the media of the artery and thus the active response of the artery is
attributed only to the media.

The active response of arteries is based on the concentration of chemicals,
where we follow the model presented in Yosibash and Priel (2012). The strain-
energy function is based on a proposal of Rachev and Hayashi (1999). Rachev
and Hayashi (1999) stated that the concentration A of the vasoconstrictor is
proportional to the first Piola-Kirchhoff stress component due to the contrac-
tion of the SMCs in the media. The SMCs are also arranged circumferentially
in the shape of a helix in the media and are represented by the unit vector ag.
If a ring test is assumed, then the loading is in circumferential direction. In this
case, only one component of the first Piola-Kirchhoff tensor is assumed to be
addressed. This first Piola-Kirchhoff stress component due to the contraction
of SMCs is assumed to read

Pact = S(A)f(Af)v (7)

where S(A) is the tension-dose relationship and f();) is the tension-stretch
relationship. The tension-dose relationship follows Chamiot-Clerc et al (1998)
and is obtained from a ring test,

Am
S(A) = Spax———— 8
(4) = Suws 7 11 (5)

Here, m is the slope parameter, Syax represents — in this sense — the maxi-
mum value of the first Piola-Kirchhoff stress component due to the influence of
vasoconstrictor and Asg is the concentration at which 50% of maximum ten-
sion is achieved and is called the half maximal effective concentration. It was
experimentally determined, see (Cox, 1978b), that the contraction in arteries
only occur within a certain range of concentration of the neurotransmitter, i.e.
the contraction occurs within a minimum and maximum concentration of the
vasoconstrictor.

The tension-stretch relation is based on the proposal of Rachev and Hayashi
(1999),

2
Fh) = 1<H) A A g

0 otherwise,

9)

where Apax is the stretch at which maximum contraction of the artery is
possible, and Ao and A\ = Ag + 2(Amax — Ao) are the minimum and maximum
stretches at which the artery contracts. The tension-stretch relationship is
obtained from inflation experiments of contraction of SMC under the influence
of vasoconstrictor. This relationship has been experimentally proven to be a
parabolic curve, see (Cox, 1978a,b; Rachev and Hayashi, 1999). The stretch of
the SMC fiber can be represented by the invariant Iy = A\? = C-M; = a;-Cay,
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where as is the SMC-direction, and M = as ® as the corresponding structural
tensor. Egs.(8) and (9) are substituted in Eq.(7) to obtain

2
_ AT ] Amax—r
Pact = Smax A""-‘rAg(l) |:1 (}\max—)\()) :|; >\1 > )\f > )\0 (10)

0 otherwise.

It is assumed that an active strain-energy function exists. This first Piola-
Kirchhoff stress can be obtained by differentiating the active strain-energy
function with respect to the muscle stretch, i.e.

8 wact
Pact = : 11
act >\f ( )

Inserting Eq.(10) into Eq.(11) and then integrating, the expression for ¥,

A™ Amax—A 3
Smax Amt AT |:3((>\max‘)\f0))2 + )\f:|7 )\% > )\% > )\g

I/Jact = (12)

0 otherwise,

is obtained. The transition to a three-dimensional model is achieved using the
second Piola-Kirchhoff tensor for the active response of the artery is

~ awact A™ —1/2 )\max - Iif/Q 2
Toet = 2 e S T 1 (Zmax 7 0af ) \php (13
t 0C Am + Agé af )\max . >\0 ! ( )

Pushing forward Eq.(13) and Eq.(6) and substituting the resulting terms in
Eq.(1), we obtain the total Cauchy stress tensor for the media,

T 10

+ 2;]71]611\/[ ((I4 — 1)€k2M(I471)2MM0 + (IG - 1)6k2M(I61)2MM1>

m _ max_11/2 2
T S 12 (1 (A 4 ) )Mf.

M (J4 = T + ey J 2/3B"

A™ + A% A )\max - )\0
(14)
The total Cauchy stress for the adventitia contains only the passive response
Tpas7
K _
Ta =—2(J4 = JO + e, J23B”

10

(15)
+ 2J_1k‘1A ((14 - 1)€k2A(I4_1)2MA0 + (IG - 1)€k2A(Iﬁ_1)2MA1> .
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3 Numerical Treatment using Finite Elements

Frequently, the concentration A in Eqns.(14) is assumed to be only a pa-
rameter, which cannot describe the spatial and temporal evolution within a
boundary-value problem. In the following, we propose the concentration A as
primary variable, which is a result of the diffusion process into the artery.
Since the chemicals diffuse into the tissue, see (Hamill et al, 1996), we draw
on the diffusion equation to model the temporal and spatial distribution of
the concentration A. To couple the diffusion equation with the mechanical
model (balance of linear momentum and the constitutive equations), we pro-
vide only the basic, resulting equations using finite elements. In this respect,
the method of vertical lines is applied, where in a first step the spatial dis-
cretization is carried out, here, using finite elements, and, in a second step, the
time discretization is applied. Since the resulting equations are similar to those
of thermo-mechanically coupled problems, we only shortly recap the equations
and refer to the literature.

The local equilibrium condition is based on balance of linear momentum,

Div Tr(X,t) + pr(X)k(X) = 0 (16)

where Tr = (det F)FF~7T defines the first Piola-Kirchhoff stress tensor, pr
represents the specific mass density in reference configuration, and prk the
specific body forces. To obtain the weak formulation, we multiply Eq.(16)
with the virtual displacements du(X), integrate over the volume, apply the
divergence theorem and a product rule, to obtain

’T‘-dEdVR:/

tr - dudAgr + / prk - dudVy (17)
Ar

Vr Vr
where T is the second Piola-Kirchhoff tensor, T = (det F)F'TF~7T| tg the
surface tractions relative to the reference configuration, Vi the volume and
AR the surface in the reference configuration, and 6E = sym(F7§ Grad u) the
virtual Green strain tensor.

The governing equation for diffusion process is given by

A=—div] (18)

where A is the concentration of NE at the material point X. J is called the
diffusive flux given by Fick’s first model (law) relative to the current configu-
ration,

J=—Dgrad A, (19)

where D is the diffusivity (or diffusion coefficient), which is assumed to be
constant. This leads to the partial differential equation

A = Ddiv(grad A). (20)
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The weak formulation is obtained by multiplying Eq.(20) with the virtual
concentration dA, integrating over the volume, drawing on a product rule,
and applying the divergence theorem,

/AM@#/DgMAQMMME/@mMZ (21)
14 \% A

This is the weak form of the diffusion equation relative to the current configu-
ration. V is the volume of the material body in the current configuration and
A its surface. ga represents the surface flux. It is assumed that no neurotrans-
mitter is produced in the media, and, thus, no source term is identified.

To keep the presentation as short as possible, we refer to the spatial dis-
cretization in thermo-mechanics, see (Quint, 2012; Rothe, 2015; Netz, 2013;
Netz and Hartmann, 2015) and the literature cited therein. In other words,
shape functions for virtual concentrations § A and concentrations A are intro-
duced and inserted into Eq.(21). This leads to the DAE-system

g(t,ua)=0 (22)
Ct,u)a=rx(t,u,a), (23)

with the unknown nodal displacements u€ R™ and the unknown nodal con-
centrations @€ R™. €€ R"*" represents a mass matrix like matrix. The
representation of the matrices is compiled in the Appendix A. The DAE-
system is equipped with initial conditions u(0) = Uy and a(0) = ay. The
initial conditions have to be consistent, i.e. we have to fulfill the algebraic
constraint g(0, Up, @) = 0. In our examples in Section 4, this is guaranteed
by uy = 0, ay = 0, and no external equivalent nodal forces at time ¢ = 0. In
conclusion, the spatial discretization yields a DAE-system, which requires an
appropriate time discretization.

There are different approaches to solve such kind of problems. Apart from
discontinuous/continuous Galerkin methods, see, for example, (Gleim et al,
2015), BDF-methods are another choice, (Ascher and Petzold, 1998; Eckert
et al, 2004), or fully-implicit Runge-Kutta methods, (Hairer and Wanner,
1996), Rosenbrock-type methods (linear-implicit schemes), (Hamkar and Hart-
mann, 2012; Hamkar et al, 2012; Hamkar, 2013), half-explicit Runge-Kutta
methods, (Hairer et al, 1989; Hairer and Wanner, 1996; Strehmel and Weiner,
1995), or diagonally-implicit Runge-Kutta methods (DIRK), (Fritzen, 1997;
Ellsiepen, 1999; Hairer and Wanner, 1996; Netz et al, 2013) can be applied. A
comparison of the methods in the finite element context is provided in (Rothe
et al, 2012). Regarding partitioned and monolithic approaches, see (Erbts and
Dister, 2012; Erbts et al, 2015; Rothe et al, 2015a; Wendt et al, 2015).

For the second step of the method of vertical lines, namely the time dis-
cretization, we draw on diagonally-implicit Runge-Kutta methods (DIRK).
They have, apart from particular properties for stiff problems, the advantage
to contain the classical Backward-Euler method, or even the Crank-Nicolson
scheme as special cases. Moreover, high-order convergence and time-adaptivity
are provided. Further advantages are, for example, that they are self-starting
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(which is a drawback of BDF-schemes) and that the size of the resulting system
of coupled non-linear equations remain the same as for the DAE-system itself.
Disadvantages such as order reduction phenomena in particular problems are
discussed in Section 4. There are various methods: a fourth-order method
with an embedded method of third order for step-size selection proposed by
(Hairer and Wanner, 1996). A third-order method of Alexander (1977), which
was extended by Cash (1979) for time-adaptivity, and a second-order scheme
of Alexander (1977) extended to adaptivity in Ellsiepen (1999), see (Diebels
et al, 1999; Ellsiepen and Hartmann, 2001) as well.

Since DIRK-methods are one-step methods, the quantities — nodal displace-
ments U, and nodal concentrations a,, — at time ¢,, are known. We formally
assemble these quantities into the vector y,I' = {ul,aT}. The quantities at
time t,41 are computed by

y7z+1 = yn + Atn Z bz Ynz (24)

i=1

bi,i=1,...,s, are weighting factors defined by the integration method, At,, =
tna1—ty, is the step-size, and Y,,; are stage derivatives, which are stored at each
stage Tp; = t,, +¢; At,, (the ¢;’s are parameters of the respective DIRK-method
as well),

. Y. —S. .
Y, = —m e 25
Atnaii ( )
The starting values
i—1
Sni =Yy, t Atn Z Qij Ym (26)
=1

are known at each stage T); since they depend only on quantities computed
in the previous stages. The weighting factors a;; are determined for spe-
cific DIRK-methods. All factors a;;, ¢; and b; are assembled in the so-called
Butcher-array. At each stage T),; a system of coupled non-linear equations

Gu(Tniu Unia Anz) =0

Ga(Thi, Uni, Ani) =0 27
has to be solved to obtain the stage quantities Y,; = {U AL} Here,
GA(Tni, Uni, Ani) = Ca(Toi, Uni) {Ani— A} — At naiiFo; (Tn Ui, U”At_aUS

! 1228)

where different techniques are available, (Hartmann et al, 2009a). U,fi and
Ansi are the starting values depending only on stage derivatives already cal-
. . T ST 5T . .
culated in previous stages, see Eq.(26), S, = {Um A } Regarding time-
adaptivity, i.e. an automatic step-size selection based on local error estimation,
see (Hairer et al, 1993; Ellsiepen and Hartmann, 2001) and for coupled prob-
lems in (Grafenhorst et al, 2017). Here, we draw on a method of order p = p—1
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— having new weighting factors b;, i = 1,...,s — and compute the difference
vectors

S
Uery = an+1 - un+1 - Atn Z(bz - bz)unu
i=1
S
8orr = 81 — Bpy1 = Aty Z(bz —bi)Ap;.
i=1
The components are required for the relative error measures

1 Jw U 2 1 Ja “ 2
err k err k
[ — —_— s EA = — D rE———— s
h Ty ; <E?Uk(n)| +€§> na ; <E?|ak(n)| +€§>
(30)
where the maximum e,;, = max(ey, es) is chosen to estimate the new step-size.
n, and n, are the number of unknown nodal displacements and concentra-
tions respectively. €%, ¢ are relative and ¢, 2 absolute error tolerances for
the displacements and concentration degrees of freedom defined by the user.
If ey, < 1, the computed step-size is accepted and we can continue the compu-
tations with a new step-size At,ew, otherwise the computations are rejected

and we have to repeat it with a new step-size,

(29)

max(fmina fsafety 6;11/(13+1)) ife,, >1

min(fmaxa fsafety e;l/(ﬁ+1)) if em < 1

The safety factor 0 < fsafety < 1 prevents oscillations in the step-size controller
while fin and fiax keep the step-size from increasing and decreasing too fast.
In practice, typical values for these factors are: 0.8 < foafety < 0.9,0.2 < frnin <
0.5, 2 < fimax < 3, see (Hairer et al, 1993; Ellsiepen and Hartmann, 2001).

This step-size selection procedure works well for physical problems, showing
no drastic change in the quantities. In that case, more step-size rejections
occur. If this is embedded in periodic processes, too many step-size rejections
make the computations not as efficient as they could be. Thus, a modification
for cyclic and periodic situations is proposed. The principal idea is to take the
history of the step-size selection of the last periods into account.

First, we have to define the starting time tga,t, when the periodic process
leads to more or less periodic step-size selections. Moreover, the period T" has
to be known, which is defined by the input (mechanical loading) process. Only
in the case, when the step-size should be increased the history information
is taken into consideration. Here, we can take only one, several, or all cycles
into consideration, i.e. the accepted step-sizes are stored at each time ¢, for a
certain number of cycles. We define the maximum cycles to be considered nax.-
Then, we look for the step-sizes at the times toq = t, — kT, k= 1,..., Nmax,
which are in the intervals t1; < toq < tor. We take the smaller of the step-sizes
concerned, Aty = min(Atyg, Atog), and from all chosen step-sizes the largest
is chosen, Atqlq = maxg—1,. Aty. This, is used for defining

Atglg
fhist = foldTZﬂa

Atpew = At,, X { (31)

. 5nmax
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where f,q has to be adapted to the situation. Later on, we choose foq = 1.
The new step-size is estimated by
—1/(p+1 .
_ max(fmina fsafety €m o+ )) ife,, >1
Atpew = Aty X ) —1/(p+1) . (32)
mln(fma)u fsafety €m ) fhist) if €m < 1
In other words, there is not only the influence of the current local error esti-

mation, but also the history for cyclic process.

4 Numerical Examples

In the following, we discuss two examples. First, we investigate the order be-
havior of various DIRK-methods, which are applied to the DAE-system (22)
and (23). We will see that order reduction phenomena might occur depend-
ing on the Dirichlet boundary conditions. According to (Rothe et al, 2015b)
a proposal of (Alonso-Mallo, 2002; Alonso-Mallo and Cano, 2004) is chosen.
In the second example, time-adaptive computations are performed on a re-
constructed artery, where the internal pressure cycles are overlapped with a
spontaneous increase of the noradrenaline concentration at the inner surface.
Here, apart from the influence of the diffusivity generating the active response
of the artery, the new concept of the step-size selection for periodic processes
is considered.

4.1 Order Investigation

We are interested in the order behavior of the DAE-system (22) and (23). The
order analysis is performed by taking an example of a quarter of a cylinder
which is fixed along the z-axis so as to resemble an artery (symmetry condi-
tions are assumed for displacements), see Fig. 2. For the spatial discretization,
twenty-noded hexahedral Lagrange elements are used to obtain ne = 1750
summing up to a total number of n,04es = 12728 nodes. The cylinder is di-
vided into two layers, media and adventitia. The media is assumed to be 4 mm,
whereas the adventitia is assumed to has a thickness of 2mm. The SMCs are
assumed to be in circumferential direction. The NE is applied on the inner side
of the cylinder as shown in Fig. 2. Initially, the concentration of NE in the
entire cylinder is assumed to be A(X,0) = 0, i.e. the artery is not activated.

4.1.1 Linear Loading Path

As a first step, the cylinder is loaded by a linear increasing concentration
varying from 0 to 0.1 nM within one second, see Fig. 3(a). The NE diffuses
into the media as well as the adventitia. However, due to the lack of SMCs
in the adventitia, it does not actively contract in this region. The contraction
of the artery takes place only in the media. This is enforced in the model as
described in Section 2. The value of the material parameters are taken from
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Uy
ga =0 u =< uy
0

Fig. 2: Geometry, mesh and boundary conditions (units in mm)
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Fig. 3: Loading paths

Yosibash and Priel (2012) except for the diffusivity of NE in the artery. The
diffusivity or diffusion coefficient is assumed in this particular case. The entire
material parameter list is compiled in Tab. 1. In the following order study,
DIRK-methods of different order (be: Backward-Euler method (p =1, s = 1),
alex2: second order method of Alexander (1977) (p = 2, s = 2), alex3: third
order method of Alexander (1977) (p = 3, s = 3), hairer4: fourth order method
according to (Hairer and Wanner, 1996) (p = 4, s = 5)) are used. The factors
of the DIRK methods are assembled into a so-called Butcher-Tableau and
can be found in Appendix B. The relative error quantities are defined by the
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Table 1: Active and passive material parameters (Yosibash and Priel, 2012)

material parameters symbol value unit
bulk modulus - media Kwm 6.6667 x 10~*  N/mm?
shear modulus - media Gwum 2.0 x 1072 N/mm?
angle of helix in media Bum 20 °
anisotropic material parameter - media ki 6.0 x 1074 N/mm?
anisotropic material parameter - media kom 1.2 -

bulk modulus - adventitia Ka 6.6667 x 10~*  N/mm?
shear modulus - adventitia Ga 1.0 x 1072 N/mm?
angle of helix in adventitia Ba 64 °
anisotropic material parameter - adventitia kia 4.0 x 1074 N/mm2
anisotropic material parameter - adventitia koa 1.2 -

max. stretch at which contraction of the artery is possible Amax 1.49 -
minimum stretch at which the artery contracts Ao 0.85 -

max. value of the 13* PK stress component due to the activation  Spax 4.5 %1072 N/mm2
slope parameter m 5.9 -

half maximal effective concentration Asg 0.1 nM
diffusivity- media (assumption) Dy 2 mm? /s
diffusivity- adventitia (assumption) Dy 5 mm? /s

maximum relative error over all the points in time ¢,

Uref —u Aref —_A

erry = max w , eIT4 = max 1A, = Al . (33)
n le?,X (Hun ||> n max (HA;ef”)

n

In the case of order considerations for the displacement degrees of freedom, ex-
cept for the Hairer and Wanner method, the other three methods achieve their
respective orders, see Fig. 4(a). For the case of the concentration behavior, see
Fig. 4(b), all expected orders are reached. The reason of not achieving fourth-
order is not known to the authors. Similar results can be found in (Rothe et al,
2015b), where different coupling problems are investigated. There — in some
situations — fourth order is not achieved as well.

4.1.2 Non-Linear Loading Path

In a second example, order analysis is performed for cases with non-linear
concentration loading (sinusoidal) as shown in Fig. 3(b). In this case, it can
be noticed that the third and fourth order time-integration methods do not
achieve the expected convergence orders, see Fig. 5. This is known as order re-
duction phenomenon, see (Alonso-Mallo, 2002; Alonso-Mallo and Cano, 2004).
According to their proposal, the external loading functions are integrated as
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Fig. 4: Convergence behavior for order analysis for linear loading path
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Fig. 5: Convergence behavior for the order analysis of a sinusoidal loading path

well, see (Rothe et al, 2015b) and the literature cited therein. This circumvents
with no essential effort the order reduction problem, see Fig. 6. Later on, this
approach is followed.

4.2 Artery

In the second example, a three-dimensional model of an artery is chosen to
demonstrate the principal applicability of the proposed coupling of diffusion
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Fig. 6: Convergence behavior for order analysis for non-linear loading path
using (Alonso-Mallo, 2002; Alonso-Mallo and Cano, 2004) approach

with mechanical model by Yosibash and Priel (2012), sce geometrical model in
Fig. 7, The artery has approximately a length of 21 mm with a wall thickness

z = 0mm

a= 5.3 mm

z=9.7mm

Fig. 7: Three-dimensional model of an artery

of 0.56 mm. The inner diameter of the artery is approximately 0.56 mm. The
media is assumed to be twice the size of the adventitia and is approximately
0.37mm . It is meshed using twenty-noded hexahedral elements leading to
nel = 10500 elements and resulting in a total number of nyoqes = 47880 nodes
((ny = 136080, n, = 43260)).

The NE-concentration and the pressure are applied as boundary conditions
on the inner side of the artery as in the case of real arteries. The pressure of
the blood inside the artery is a periodic load taken from (Reitsamer and Kiel,
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2002) for a rabbit. The pressure provided is required as input to the simulation
and varies according to a periodic rhythm (here, we applied a Fourier series us-
ing the Curve Fitting Toolbox™ in Matlab® to obtain a continuous function
varying between 50 — 80mmHg , see Fig. 8(a)). Parallel to the pressure load,

80 04 /
o 70 \ | ’ 1 = 035
il i /
[ l |2
2 50 = o>
g .8 5 /
o 40 50 | ‘ n h h ’ 8 45 0. }
] , £ 015
% 30 60 ‘ M‘ ‘Jn ‘m ‘ % /
195}
O 20 i < 0.1
5 4t ] 5 |
a, S)
10 N S 005
2 3 4 5 ]
0 i i 0
0 5 10 15 20 25 0 5 . 10. 15 20
time in s time In s

(a) Application of pressure on the inner side (b) Application of concentration on the inner
side

Fig. 8: Mesh and boundary conditions applied on the inner side of the artery

the concentration increases from 0 to 0.4nM at the inner side of the artery,
see Fig. 8(b). The top and the bottom of the artery is fixed in all directions,
which represent boundary conditions of an artery in an experiment. The ma-
terial parameters are assumed to be same as that taken for the example in
Section 4.1, see Tab. 1.

The results shown in Fig. 9 clearly demonstrate the activation of the artery
under the influence of NE. The artery contracts and this change can be noticed
in Fig. 9(b), where the change in inner diameter of 3 points at the inner side
at three different locations along axial direction at Z = 0 mm (approximately
half the length of the artery), Z = 5.3 mm, and Z = 9.7 mm become negative
after activation. The change in inner diameter at the same points on the inner
surface of the artery with respect to the pressure before and after activation,
can be seen in Fig. 9(a). The von Mises stress distribution inside the artery
can be seen in Fig. 10 for two different times: Fig. 10(a) shows the undeformed
configuration fo the modeled artery , whereas Fig. 10(b) visualizes the maxi-
mum pressure of a fully activated artery. It should be noted that the size of
the deformation is in the order of magnitude of the experimental findings in
(Wagner and Humphrey, 2011), see (Yosibash and Priel, 2012) as well.

Fig. 11(a) shows the step-size behavior of the entire process demonstrat-
ing the time-adaptivity. Using the step-size selection procedure in Section 3,
the highly non-linear periodic loading process is computed. We draw on the
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Fig. 9: Results from the simulation of geometry reconstructed from a real
artery
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Fig. 10: Undeformed configuration and von Mises stress distribution inside the
artery (units in N mm™2)

method of (Ellsiepen, 1999), see (Ellsiepen and Hartmann, 2001) as well, which
is a second-order accurate scheme (time-adaptive version) based on the second-
order scheme of Alexander (1977). The step-size selection is mainly influenced
by the highly non-linear loading process of the blood pressure. Furthermore,
due to this non-linearity, a number of steps are rejected. The high number of
rejections reduces the efficiency of the computation. In order to circumvent
this problem, the new step-size selection procedure in Eq.(32) is chosen. This
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Fig. 11: Step-size behavior of the two schemes

procedure reduces the computational time by approximately 25%. The step-
size behavior according to the new proposed scheme is shown in Fig. 11(b).

5 Conclusions

In this paper, we coupled - for the first time - the diffusion equation with
the mechanical model proposed by Yosibash and Priel (2012) to reproduce
the transient and non-local behavior of the activation of artery contractions.
The method of vertical lines was applied to the diffusion-mechanical coupled
problem leading — in the context of finite elements — to a large, coupled DAE-
system. High-order time integration schemes were used to solve the resulting
DAE-system in the time domain. The resulting non-linear system of equations
were solved using Newton-Raphson method. Different high-order time inte-
gration schemes were investigated regarding their convergence order. In the
case of linear loading of the concentration in the diffusion equations, it was
observed that, except for the Hairer and Wanner method — first, second, and
third-order methods (Backward-Euler method, Alexander’s method of second
and third order) achieve their respective orders. However, in the case of non-
linear loading only second order was achieved. This problem, known as order
reduction phenomenon, was circumvented by using the Alonso-Mallo (2002);
Alonso-Mallo and Cano (2004) approach. Finally, a cyclic rhythm resembling
the blood pressure cycle along with activation using NE was applied on a
reconstructed pig artery to study the active response of the artery. Here, it
becomes obvious that activation essentially changes the physical and geomet-
rical behavior of an artery which is controlled by the diffused chemical in the
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artery’s wall. From the numerical point of view, we performed real pressure
cycles leading to a considerable number of step-size rejections. These are min-
imized by a new step-size selection procedure considering the history of the
periodic-like time steps as well. In our example, the proposed new scheme
reduces the computational time by around 25%.
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Appendix A. The representation of the functional matrices
Applying spatial discretization of Eqns.(16) - (20) leads to the DAE-system (22) - (23) with

the unknown nodal displacements U € R™» and the unknown nodal concentrations a € R™a.
Here,

el n&
gt ua) =S ZET| S wiB g TRhe (1, C(u), @) detj | —B(H) =0, (34)
e=1 k=1

where Z7 is an assembling matrix containing zeros and ones (which is not programmed,
representing the assembling procedure, but leading to a consistent matrix notation), wy, are
the weighting factors of the Gaussian quadrature, B,S represents the strain-displacement
matrix consisting of derivatives of the shape functions with respect to spatial coordinates,
see, for example, (Bathe, 2002), F$; defines the push-forward operator, h® symbolizes the
elasticity relation defining the second Piola-Kirchhoff stresses, and det j © denotes the deter-
minant of the Jacobian relative to the current configuration. For more detailed explanation,
see (Hartmann, 2002, 2003).

ﬁ(t):/ NueTpkedVR—i-/ NS TsedAg (35)
% AR

is the vector containing volume distributed load and the traction force where N is the
matrix of shape function for the displacement and s¢ are surface tractions.

el ngG
Ct,ua)=> 25" [Z wrporN§ NS T det J ] Zg, CegRMauXnau (36)
e=1 k=1

represents a mass matrix like matrix. Z£ is the assembling matrix of the element contribu-
tions, N § defines the vector of shape functions for the concentration approximation, and
nau denotes the number of unknown concentrations. The right-hand side of the differential
part of the DAE-system (23) reads

ra(t,u,a) = —C(t,u,a)a—p_ (t,u,a (37)
where,
el ng
Ct,ua)=> Z5"| > wiprNSNS TdetJ©|Zy, CeRMenxXmap, (38)
e=1 k=1

€ . . .. .
Z, is a matrix containing zeros and ones to represent the known concentrations and nap
represents the number of prescribed concentrations. The second term in Eq.(37) reads

p, (t,u,a) = Cy (t,u, a)a(t) + C, (t, u,a)a(t) (39)
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with
el n%
Co(tuay=> Zi"| > w,DBSBS Tdetjc|Z5, Cp,€RMenXman, (40)
e=1 k=1
and
Mel n%
Cotbua)=> Zi"|> w,DBSBS T detj®|Zy, Cp,€RMenxmap, (41)
e=1 k=1

Bfe R™4 is a vector similar to the strain-displacement matrix consisting of the derivatives
of shape functions of the concentration with respect to spatial coordinates. n$ define the
element degrees of freedom of the concentration, and D the diffusion coefficient. The coupling
of Eq.(23) to the deformation (displacements) is given by FJ = j. Thus, the DAE-system
(22) - (23) represents a two-way coupled (fully coupled) problem.

Appendix B. The parameters of the applied DIRK-methods

Tab. 2 shows all the factors of the DIRK-methods used for the examples studied in Sec. 4.

Table 2: Butcher-Tableaus of the different DIRK methods

(a) Backward Euler (be) (s=1,p=1)

1(1

1
(b) Alexander/Ellsiepen (alex2) (s =2,p=2,p=1)

ol

1ll-aa«a 1 R 5

—_1 a=1- 12, a=2-22
l-aa 2 4
1—aa

(¢) Alexander/Cash (alex3) (s =3,p=3,p =2)
v = 0.4358665215084580
T = 0.2820667392457705

T—Y
o\T =77 a = 1.2084966491760101
1l a B~ B = —0.6443631706844691
] a ﬁ v 6 = 0.7179332607542295
N B 0 a = 0.7726301276675511
o B = 0.2273698723324489
(d) Hairer & Wanner (hairerd) (s =5,p =4,p = 3)
1 1
4| 4
311 1
il 2 1
u| 7 11
20| 30 25 1
1|371 _ 137 15 1
2|1360 2720 544 4
11728 a9 125 85 1
24 48 16 12 4
—» 40 125 8 T
24 48 16 12 4
59 _1r 225 _8
48 96 32 12
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